Minimal surfaces in a complex hyperquadric Q2

被引:2
|
作者
Xiaoxiang Jiao
Jun Wang
机构
[1] Graduate University,School of Mathematics
[2] Chinese Academy of Sciences,School of Mathematics
[3] Nanjing Normal University,undefined
来源
Manuscripta Mathematica | 2013年 / 140卷
关键词
53C42; 53C55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we discuss minimal surfaces in a complex hyperquadric Q2. It is proved that every minimal surface of constant Kähler angle in Q2 is holomorphic, anti-holomorphic, or totally real. We also prove that minimal two-spheres in Q2 with either constant curvature or parallel second fundamental form must be totally geodesic.
引用
收藏
页码:597 / 611
页数:14
相关论文
共 50 条
  • [1] Minimal surfaces in a complex hyperquadric Q2
    Jiao, Xiaoxiang
    Wang, Jun
    MANUSCRIPTA MATHEMATICA, 2013, 140 (3-4) : 597 - 611
  • [2] MINIMAL SURFACES IN THE COMPLEX HYPERQUADRIC Q2 II
    Wang, Jun
    Xu, Xiaowei
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (06) : 2693 - 2703
  • [3] Lagrangian surfaces in the complex hyperquadric Q2
    Wang, Jun
    Xu, Xiaowei
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 97 : 61 - 68
  • [4] Local rigidity of minimal surfaces in a hyperquadric Q2
    Fei, Jie
    Wang, Jun
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 133 : 17 - 25
  • [5] Superminimal surfaces in hyperquadric Q2
    Jun Wang
    Jie Fei
    Frontiers of Mathematics in China, 2020, 15 : 1035 - 1046
  • [6] Totally real conformal minimal tori in the hyperquadric Q2
    ZHONG Xu
    WANG Jun
    JIAO XiaoXiang
    ScienceChina(Mathematics), 2013, 56 (10) : 2014 - 2014
  • [7] Totally real conformal minimal tori in the hyperquadric Q2
    Xu Zhong
    Jun Wang
    XiaoXiang Jiao
    Science China Mathematics, 2013, 56 : 2015 - 2023
  • [8] Minimal Lagrangian submanifolds of the complex hyperquadric
    Haizhong Li
    Hui Ma
    Joeri Van der Veken
    Luc Vrancken
    Xianfeng Wang
    Science China Mathematics, 2020, 63 : 1441 - 1462
  • [9] Totally real conformal minimal tori in the hyperquadric Q 2
    Zhong Xu
    Wang Jun
    Jiao XiaoXiang
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (10) : 2015 - 2023
  • [10] Minimal Lagrangian submanifolds of the complex hyperquadric
    Li, Haizhong
    Ma, Hui
    Van der Veken, Joeri
    Vrancken, Luc
    Wang, Xianfeng
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (08) : 1441 - 1462