Isolation Kernel Estimators

被引:0
|
作者
Kai Ming Ting
Takashi Washio
Jonathan Wells
Hang Zhang
Ye Zhu
机构
[1] Nanjing University,National Key Laboratory for Novel Software Technology
[2] Osaka University,The Institute of Scientific and Industrial Research
[3] Deakin University,School of Information Technology
来源
关键词
Isolation Kernel; Kernel density estimation; Anomaly detection; Kernel regression;
D O I
暂无
中图分类号
学科分类号
摘要
Existing adaptive kernel density estimators (KDEs) and kernel regressions (KRs) often employ a data-independent kernel, such as Gaussian kernel. They require an additional means to adapt the kernel bandwidth locally in a given dataset in order to produce better estimations. But this comes with high computational cost. In this paper, we show that adaptive KDEs and KRs can be directly derived from Isolation Kernel with constant-time complexity for each estimation. The resultant estimators called IKDE and IKR are the first KDE and KR that are fast and adaptive. We demonstrate both the superior efficiency and efficacy of IKDE and IKR in anomaly detection and regression tasks, respectively.
引用
收藏
页码:759 / 787
页数:28
相关论文
共 50 条
  • [41] Beta kernel estimators for density functions
    Chen, SX
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1999, 31 (02) : 131 - 145
  • [42] Kernel estimators of extreme level curves
    Abdelaati Daouia
    Laurent Gardes
    Stéphane Girard
    Alexandre Lekina
    TEST, 2011, 20 : 311 - 333
  • [43] Risk bounds for kernel density estimators
    D. M. Masaon
    Journal of Mathematical Sciences, 2009, 163 (3) : 238 - 261
  • [44] Bias reduction and elimination with kernel estimators
    Sain, SR
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2001, 30 (8-9) : 1869 - 1888
  • [45] SYMMETRIZED KERNEL ESTIMATORS OF THE REGRESSION SLOPE
    BLYTH, S
    STATISTICS & PROBABILITY LETTERS, 1994, 21 (02) : 167 - 172
  • [46] Kernel estimators of extreme level curves
    Daouia, Abdelaati
    Gardes, Laurent
    Girard, Stephane
    Lekina, Alexandre
    TEST, 2011, 20 (02) : 311 - 333
  • [47] Boundary performance of the beta kernel estimators
    Zhang, Shunpu
    Karunamuni, Rohana J.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2010, 22 (01) : 81 - 104
  • [48] ANALYZING CURVES USING KERNEL ESTIMATORS
    GASSER, T
    PEDIATRIC NEPHROLOGY, 1991, 5 (04) : 447 - 450
  • [49] Minimax properties of beta kernel estimators
    Bertin, Karine
    Klutchnikoff, Nicolas
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (07) : 2287 - 2297
  • [50] EFFICIENCY BEHAVIOUR OF KERNEL-SMOOTHED KERNEL DISTRIBUTION FUNCTION ESTIMATORS
    Janssen, Paul
    Swanepoel, Jan W. H.
    Veraverbeke, Noel
    SOUTH AFRICAN STATISTICAL JOURNAL, 2020, 54 (01) : 15 - 23