Isolation Kernel Estimators

被引:0
|
作者
Kai Ming Ting
Takashi Washio
Jonathan Wells
Hang Zhang
Ye Zhu
机构
[1] Nanjing University,National Key Laboratory for Novel Software Technology
[2] Osaka University,The Institute of Scientific and Industrial Research
[3] Deakin University,School of Information Technology
来源
关键词
Isolation Kernel; Kernel density estimation; Anomaly detection; Kernel regression;
D O I
暂无
中图分类号
学科分类号
摘要
Existing adaptive kernel density estimators (KDEs) and kernel regressions (KRs) often employ a data-independent kernel, such as Gaussian kernel. They require an additional means to adapt the kernel bandwidth locally in a given dataset in order to produce better estimations. But this comes with high computational cost. In this paper, we show that adaptive KDEs and KRs can be directly derived from Isolation Kernel with constant-time complexity for each estimation. The resultant estimators called IKDE and IKR are the first KDE and KR that are fast and adaptive. We demonstrate both the superior efficiency and efficacy of IKDE and IKR in anomaly detection and regression tasks, respectively.
引用
收藏
页码:759 / 787
页数:28
相关论文
共 50 条
  • [1] Isolation Kernel Estimators
    Ting, Kai Ming
    Washio, Takashi
    Wells, Jonathan
    Zhang, Hang
    Zhu, Ye
    KNOWLEDGE AND INFORMATION SYSTEMS, 2023, 65 (02) : 759 - 787
  • [2] KERNEL QUANTILE ESTIMATORS
    SHEATHER, SJ
    MARRON, JS
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) : 410 - 416
  • [3] Kernel Averaging Estimators
    Zhu, Rong
    Zhang, Xinyu
    Wan, Alan T. K.
    Zou, Guohua
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 41 (01) : 157 - 169
  • [4] Convergence of kernel learning estimators
    Norkin, Vladimir I.
    Keyzer, Michiel A.
    20TH INTERNATIONAL CONFERENCE, EURO MINI CONFERENCE CONTINUOUS OPTIMIZATION AND KNOWLEDGE-BASED TECHNOLOGIES, EUROPT'2008, 2008, : 306 - +
  • [5] Kernel mean shrinkage estimators
    1600, Microtome Publishing (17):
  • [6] On kernel estimators of density ratio
    Chen, Sy-Mien
    Hsu, Yu-Sheng
    Liaw, Jian-Tong
    STATISTICS, 2009, 43 (05) : 463 - 479
  • [7] STUDY OF RISKS OF KERNEL ESTIMATORS
    MOKKADEM, A
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1990, 35 (03) : 478 - 486
  • [8] Kernel Mean Shrinkage Estimators
    Muandet, Krikamol
    Sriperumbudur, Bharath
    Fukumizu, Kenji
    Gretton, Arthur
    Schoelkopf, Bernhard
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17 : 1 - 41
  • [9] ON CONVERGENCE OF KERNEL LEARNING ESTIMATORS
    Norkin, Vladimir I.
    Keyzer, Michiel A.
    SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (03) : 1205 - 1223
  • [10] OPTIMUM KERNEL ESTIMATORS OF THE MODE
    EDDY, WF
    ANNALS OF STATISTICS, 1980, 8 (04): : 870 - 882