Isolation Kernel;
Kernel density estimation;
Anomaly detection;
Kernel regression;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Existing adaptive kernel density estimators (KDEs) and kernel regressions (KRs) often employ a data-independent kernel, such as Gaussian kernel. They require an additional means to adapt the kernel bandwidth locally in a given dataset in order to produce better estimations. But this comes with high computational cost. In this paper, we show that adaptive KDEs and KRs can be directly derived from Isolation Kernel with constant-time complexity for each estimation. The resultant estimators called IKDE and IKR are the first KDE and KR that are fast and adaptive. We demonstrate both the superior efficiency and efficacy of IKDE and IKR in anomaly detection and regression tasks, respectively.
机构:
Univ Cambridge, Sch Clin Med, MRC Biostat Unit, Cambridge, EnglandUniv Cambridge, Sch Clin Med, MRC Biostat Unit, Cambridge, England
Zhu, Rong
Zhang, Xinyu
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Beijing Acad Artificial Intelligence, Beijing, Peoples R ChinaUniv Cambridge, Sch Clin Med, MRC Biostat Unit, Cambridge, England
Zhang, Xinyu
Wan, Alan T. K.
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Management Sci, Hong Kong, Peoples R China
City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R ChinaUniv Cambridge, Sch Clin Med, MRC Biostat Unit, Cambridge, England
Wan, Alan T. K.
Zou, Guohua
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Sch Math Sci, Beijing, Peoples R ChinaUniv Cambridge, Sch Clin Med, MRC Biostat Unit, Cambridge, England