Extended cyclic codes, maximal arcs and ovoids

被引:0
|
作者
Kanat Abdukhalikov
Duy Ho
机构
[1] UAE University,
[2] Institute of Mathematics and Mathematical Modeling,undefined
来源
关键词
Extended cyclic codes; MDS codes; Hyperovals; Maximal arcs; Ovoids; 05B25; 94B15; 51E15; 51E21; 51E22;
D O I
暂无
中图分类号
学科分类号
摘要
We show that extended cyclic codes over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document} with parameters [q+2,3,q]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[q+2,3,q]$$\end{document}, q=2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=2^m$$\end{document}, determine regular hyperovals. We also show that extended cyclic codes with parameters [qt-q+t,3,qt-q]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[qt-q+t,3,qt-q]$$\end{document}, 1<t<q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<t<q$$\end{document}, q is a power of t, determine (cyclic) Denniston maximal arcs. Similarly, cyclic codes with parameters [q2+1,4,q2-q]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[q^2+1,4,q^2-q]$$\end{document} are equivalent to ovoid codes obtained from elliptic quadrics in PG(3, q). Finally, we give simple presentations of Denniston maximal arcs in PG(2, q) and elliptic quadrics in PG(3, q).
引用
收藏
页码:2283 / 2294
页数:11
相关论文
共 50 条
  • [1] Extended cyclic codes, maximal arcs and ovoids
    Abdukhalikov, Kanat
    Ho, Duy
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (10) : 2283 - 2294
  • [2] Maximal arcs and extended cyclic codes
    De Winter, Stefaan
    Ding, Cunsheng
    Tonchev, Vladimir D.
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (04) : 807 - 816
  • [3] Maximal arcs and extended cyclic codes
    Stefaan De Winter
    Cunsheng Ding
    Vladimir D. Tonchev
    Designs, Codes and Cryptography, 2019, 87 : 807 - 816
  • [4] Linear codes from Denniston maximal arcs
    Daniele Bartoli
    Massimo Giulietti
    Maria Montanucci
    Designs, Codes and Cryptography, 2019, 87 : 795 - 806
  • [5] Linear codes from Denniston maximal arcs
    Bartoli, Daniele
    Giulietti, Massimo
    Montanucci, Maria
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (04) : 795 - 806
  • [6] Maximal arcs in projective three-spaces and double-error-correcting cyclic codes
    Hollmann, HDL
    Xiang, Q
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2001, 93 (01) : 168 - 172
  • [7] Cyclic arcs and pseudo-cyclic MDS codes
    Maruta, T
    DISCRETE MATHEMATICS, 1997, 174 (1-3) : 199 - 205
  • [8] Optimal Binary Linear Codes From Maximal Arcs
    Heng, Ziling
    Ding, Cunsheng
    Wang, Weiqiong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (09) : 5387 - 5394
  • [9] Constructions of cyclic codes and extended primitive cyclic codes with their applications
    Heng, Ziling
    Wang, Xinran
    Li, Xiaoru
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 89
  • [10] Sharp groups, two-weight codes and maximal arcs
    Bundy, David M.
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (01) : 140 - 147