共 50 条
Extended cyclic codes, maximal arcs and ovoids
被引:0
|作者:
Kanat Abdukhalikov
Duy Ho
机构:
[1] UAE University,
[2] Institute of Mathematics and Mathematical Modeling,undefined
来源:
关键词:
Extended cyclic codes;
MDS codes;
Hyperovals;
Maximal arcs;
Ovoids;
05B25;
94B15;
51E15;
51E21;
51E22;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We show that extended cyclic codes over Fq\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {F}_q$$\end{document} with parameters [q+2,3,q]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$[q+2,3,q]$$\end{document}, q=2m\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$q=2^m$$\end{document}, determine regular hyperovals. We also show that extended cyclic codes with parameters [qt-q+t,3,qt-q]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$[qt-q+t,3,qt-q]$$\end{document}, 1<t<q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1<t<q$$\end{document}, q is a power of t, determine (cyclic) Denniston maximal arcs. Similarly, cyclic codes with parameters [q2+1,4,q2-q]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$[q^2+1,4,q^2-q]$$\end{document} are equivalent to ovoid codes obtained from elliptic quadrics in PG(3, q). Finally, we give simple presentations of Denniston maximal arcs in PG(2, q) and elliptic quadrics in PG(3, q).
引用
收藏
页码:2283 / 2294
页数:11
相关论文