Formation of Crystalline Sodium Hydride Nanoparticles Encapsulated Within an Amorphous Framework

被引:0
|
作者
A. Sartbaeva
S. A. Wells
M. Sommariva
M. J. T. Lodge
M. O. Jones
A. J. Ramirez-Cuesta
G. Li
P. P. Edwards
机构
[1] University of Oxford,Department of Chemistry, Inorganic Chemistry Laboratory
[2] University of Warwick,Department of Physics and Centre for Scientific Computing
[3] CCLRC Rutherford Appleton Laboratory,ISIS Facility
[4] University of Oxford,Department of Materials
来源
关键词
Sodium hydride nanoparticles; Encapsulated; Silica gel framework; In situ hydrogenation;
D O I
暂无
中图分类号
学科分类号
摘要
A major research theme to emerge in the science and technology of materials is the incorporation of nanostructure into the functionality of properties. Such nanostructured materials can offer distinct advantages over bulk materials, partly because the physical properties of the material itself can vary in a tunable, size-dependent fashion. Of course, in addition, nanoparticles offer a greatly increased surface area for chemical reaction. Typical methods for nanoparticle synthesis include: reaction in the liquid phase using the sol–gel approach and mechanical ball-milling of the bulk material; both of these approaches are somewhat problematic for the preparation of reactive nanostructured materials which are sensitive to air and/or moisture. We report here the formation of crystalline nanoparticles of sodium hydride encapsulated in a host amorphous silica gel matrix. These nanoparticles are formed by in situ hydrogenation of a precursor material—Na loaded silica gel—under mild conditions. The resulting material is considerably less pyrophoric and less air-sensitive than the bulk hydride. We anticipate that this formation method of in situ modification of reactive precursor material may have wide applications.
引用
收藏
页码:543 / 549
页数:6
相关论文
共 50 条
  • [31] Photoluminescence quantum yields of amorphous and crystalline silicon nanoparticles
    Anthony, Rebecca
    Kortshagen, Uwe
    PHYSICAL REVIEW B, 2009, 80 (11):
  • [32] Crystalline Framework Formation in Single-digit Nanometer Scale Silica Nanoparticles of Reverse Mesostructure
    Sakamoto, Shigeru
    Okada, Kenji
    Tanaka, Shinji
    Kotera, Yasuhito
    Fukatsu, Arisa
    Takahashi, Masahide
    CHEMISTRY LETTERS, 2022, 51 (06) : 605 - 609
  • [33] Studies on metal oxide nanoparticles catalyzed sodium aluminum hydride
    Pukazhselvan, D.
    Hudson, M. Sterlin Leo
    Sinha, A. S. K.
    Srivastava, O. N.
    ENERGY, 2010, 35 (12) : 5037 - 5042
  • [34] PROTHROMBIN STUDIES IN RATS RECEIVING AMORPHOUS AND CRYSTALLINE WARFARIN SODIUM
    BLUMBERG, H
    DAYTON, HB
    RAPAPORT, DN
    FEDERATION PROCEEDINGS, 1963, 22 (02) : 368 - &
  • [35] Amorphous and Crystalline Sodium Tantalate Composites for Photocatalytic Water Splitting
    Grewe, Tobias
    Tueysuez, Harun
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (41) : 23153 - 23162
  • [36] RADICAL FORMATION IN THE ADSORPTION OF TRIMETHYLBENZENES ON CRYSTALLINE AND AMORPHOUS ALUMINOSILICATES
    SURIN, SA
    FEDOROVA, LA
    GULLYEV, C
    CHUKIN, GD
    NEFEDOV, BK
    RADCHENKO, ED
    KINETICS AND CATALYSIS, 1986, 27 (05) : 1016 - 1021
  • [37] SCHOTTKY-BARRIER AMORPHOUS CRYSTALLINE INTERFACE FORMATION
    THOMPSON, MJ
    NEMANICH, RJ
    TSAI, CC
    SURFACE SCIENCE, 1983, 132 (1-3) : 250 - 263
  • [38] Formation and evolution of F nanobubbles in amorphous and crystalline Si
    Boninelli, S.
    Impellizzeri, G.
    Mirabella, S.
    Priolo, F.
    Napolitani, E.
    Cherkashin, N.
    Cristiano, F.
    APPLIED PHYSICS LETTERS, 2008, 93 (06)
  • [40] Barite formation in the ocean: Origin of amorphous and crystalline precipitates
    Martinez-Ruiz, F.
    Paytam, A.
    Gonzalez-Munoz, M. T.
    Jroundi, F.
    Abad, M. M.
    Lam, P. J.
    Bishop, J. K. B.
    Horner, T. J.
    Morton, P. L.
    Kastner, M.
    CHEMICAL GEOLOGY, 2019, 511 : 441 - 451