Cascading residual–residual attention generative adversarial network for image super resolution

被引:0
|
作者
Jianqiang Chen
Yali Zhang
Xiang Hu
Calvin Yu-Chian Chen
机构
[1] Sun Yat-sen University,Artificial Intelligence Medical Center, School of intelligent engineering
[2] China Medical University Hospital,Department of Medical Research
[3] Asia University,Department of Bioinformatics and Medical Engineering
来源
Soft Computing | 2021年 / 25卷
关键词
Deep learning; Image super resolution; Cascading residual–residual block; Generative adversarial network;
D O I
暂无
中图分类号
学科分类号
摘要
Image super resolution technology plays an important role in the field of computer vision. With the application of deep learning in the field of image super-resolution, the generative adversarial network is applied to image super-resolution and obtains images with great quality. In this paper, we propose a novel generative adversarial network structure called Cascading Residual–Residual Attention Generative Adversarial Network (CRRAGAN). First, this paper proposes a novel and efficient feature extraction module: Cascading Residual–Residual Block, which can extract multi-scale information and low-level cascade information to high-level information. CRRAGAN directly uses the channel attention module to capture low-resolution image key information and fuse it into the next stage feature. Second, a new loss combination function is proposed, a weighted sum of image loss, adversarial loss, perceptual loss, and charbonnier loss, to make the network training more stable. In the end, we compare our proposed method with 15 previous state-of-the-art methods and discuss the performance of different training datasets. Experimental results demonstrate that our model exhibits improved performance.
引用
下载
收藏
页码:9651 / 9662
页数:11
相关论文
共 50 条
  • [41] Novel Channel Attention Residual Network for Single Image Super-Resolution
    Shi W.
    Du H.
    Mei W.
    Journal of Beijing Institute of Technology (English Edition), 2020, 29 (03): : 345 - 353
  • [42] Residual scale attention network for arbitrary scale image super-resolution
    Fu, Ying
    Chen, Jian
    Zhang, Tao
    Lin, Yonggang
    NEUROCOMPUTING, 2021, 427 : 201 - 211
  • [43] Mixed Attention Densely Residual Network for Single Image Super-Resolution
    Zhou, Jingjun
    Liu, Jing
    Li, Jingbing
    Huang, Mengxing
    Cheng, Jieren
    Chen, Yen-Wei
    Xu, Yingying
    Nawaz, Saqib Ali
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2021, 39 (01): : 133 - 146
  • [44] Wavelet-based residual attention network for image super-resolution
    Xue, Shengke
    Qiu, Wenyuan
    Liu, Fan
    Jin, Xinyu
    NEUROCOMPUTING, 2020, 382 : 116 - 126
  • [45] HRAN: Hybrid Residual Attention Network for Single Image Super-Resolution
    Muqeet, Abdul
    Bin Iqbal, Md Tauhid
    Bae, Sung-Ho
    IEEE ACCESS, 2019, 7 : 137020 - 137029
  • [46] Self-calibrated Attention Residual Network for Image Super-Resolution
    Rong, Anqi
    Zhao, Li
    Huang, Pengcheng
    Xu, Jiawei
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 3325 - 3332
  • [47] Infrared and Visible Image Fusion with a Generative Adversarial Network and a Residual Network
    Xu, Dongdong
    Wang, Yongcheng
    Xu, Shuyan
    Zhu, Kaiguang
    Zhang, Ning
    Zhang, Xin
    APPLIED SCIENCES-BASEL, 2020, 10 (02):
  • [48] Hyperspectral Image Classification Based on Residual Generative Adversarial Network
    Chen Ming
    Xi Xiangyun
    Wang Yang
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (22)
  • [49] Residual in Residual Cascade Network for Single-Image Super Resolution
    Aggarwal, Anirudh
    Bansal, Mohit
    Verma, Tanishq
    Sood, Apoorvi
    ADVANCES IN INFORMATION COMMUNICATION TECHNOLOGY AND COMPUTING, AICTC 2021, 2022, 392 : 335 - 346
  • [50] PRAN: Progressive Residual Attention Network for Super Resolution
    Shi, Jupeng
    Li, Jing
    Chen, Yan
    Lu, Zhengjia
    IEEE ACCESS, 2020, 8 : 188611 - 188619