Time-dependent Gutzwiller simulation of Floquet topological superconductivity

被引:0
|
作者
Takahiro Anan
Takahiro Morimoto
Sota Kitamura
机构
[1] The University of Tokyo,Department of Applied Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Periodically driven systems provide a novel route to control the topology of quantum materials. In particular, Floquet theory allows an effective band description of periodically-driven systems through the Floquet Hamiltonian. Here, we study the time evolution of d-wave superconductors irradiated with intense circularly-polarized laser light. We consider the Floquet t–J model with time-periodic interactions, and investigate its mean-field dynamics by formulating the time-dependent Gutzwiller approximation. We observe the development of the idxy-wave pairing amplitude along with the original dx2−y2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d}_{{x}^{2}-{y}^{2}}$$\end{document}-wave order upon gradual increasing of the field amplitude. We further numerically construct the Floquet Hamiltonian for the steady state, with which we identify the system as the fully-gapped d + id superconducting phase with a nonzero Chern number. We explore the low-frequency regime where the perturbative approaches in the previous studies break down, and find that the topological gap of an experimentally-accessible size can be achieved at much lower laser intensities.
引用
收藏
相关论文
共 50 条
  • [1] Time-dependent Gutzwiller simulation of Floquet topological superconductivity
    Anan, Takahiro
    Morimoto, Takahiro
    Kitamura, Sota
    COMMUNICATIONS PHYSICS, 2024, 7 (01)
  • [2] Time-dependent ghost Gutzwiller nonequilibrium dynamics
    Center for Computational Quantum Physics, Flatiron Institute, New York
    NY
    10010, United States
    不详
    34136, Italy
    不详
    34136, Italy
    不详
    NY
    14623, United States
    Phys. Rev. Res., 2643, 3
  • [3] Time-Dependent Gutzwiller Approximation: Interplay with Phonons
    Seibold, G.
    Buenemann, J.
    Lorenzana, J.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2014, 27 (04) : 929 - 931
  • [4] Time-dependent ghost Gutzwiller nonequilibrium dynamics
    Guerci, Daniele
    Capone, Massimo
    Lanata, Nicola
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [5] Time-Dependent Gutzwiller Approximation: Theory and Applications
    Noatschk, K.
    Martens, C.
    Seibold, G.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2020, 33 (08) : 2389 - 2393
  • [6] Time-Dependent Gutzwiller Approximation: Theory and Applications
    K. Noatschk
    C. Martens
    G. Seibold
    Journal of Superconductivity and Novel Magnetism, 2020, 33 : 2389 - 2393
  • [7] Time-dependent Gutzwiller approximation for the Hubbard model
    Seibold, G
    Lorenzana, J
    PHYSICAL REVIEW LETTERS, 2001, 86 (12) : 2605 - 2608
  • [8] Time-Dependent Gutzwiller Approximation: Interplay with Phonons
    G. Seibold
    J. Bünemann
    J. Lorenzana
    Journal of Superconductivity and Novel Magnetism, 2014, 27 : 929 - 931
  • [9] The Out-of-Equilibrium Time-Dependent Gutzwiller Approximation
    Fabrizio, Michele
    NEW MATERIALS FOR THERMOELECTRIC APPLICATIONS: THEORY AND EXPERIMENT, 2013, : 247 - 273
  • [10] Time-Dependent Gutzwiller Theory for Multiband Hubbard Models
    Oelsen, E. V.
    Seibold, G.
    Buenemann, J.
    PHYSICAL REVIEW LETTERS, 2011, 107 (07)