Time-dependent ghost Gutzwiller nonequilibrium dynamics

被引:5
|
作者
Guerci, Daniele [1 ]
Capone, Massimo [2 ,3 ]
Lanata, Nicola [1 ,4 ]
机构
[1] Flatiron Inst, Ctr Computat Quantum Phys, New York, NY 10010 USA
[2] Scuola Int Super Studi Avanzati SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[3] CNR, Ist Officina Materiali, CNR IOM, Via Bonomea 265, I-34136 Trieste, Italy
[4] Rochester Inst Technol, Sch Phys & Astron, 84 Lomb Mem Dr, Rochester, NY 14623 USA
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 03期
关键词
MEAN-FIELD THEORY; HUBBARD; APPROXIMATION; SYSTEMS; PHYSICS; ATOMS;
D O I
10.1103/PhysRevResearch.5.L032023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce the time-dependent ghost Gutzwiller approximation (TD-gGA), a nonequilibrium extension of the ghost Gutzwiller approximation (gGA), a powerful variational approach which systematically improves on the standard Gutzwiller method by including auxiliary degrees of freedom. We demonstrate the effectiveness of TD-gGA by studying the quench dynamics of the single-band Hubbard model as a function of the number of auxiliary parameters. Our results show that TD-gGA captures the relaxation of local observables, in contrast with the time-dependent Gutzwiller method. This systematic and qualitative improvement leads to an accuracy comparable with time-dependent dynamical mean-field theory which comes at a much lower computational cost. These findings suggest that TD-gGA has the potential to enable extensive and accurate theoretical investigations of multiorbital correlated electron systems in nonequilibrium situations, with potential applications in the field of quantum control, Mott solar cells, and other areas where an accurate account of the nonequilibrium properties of strongly interacting quantum systems is required.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Time-dependent ghost Gutzwiller nonequilibrium dynamics
    Center for Computational Quantum Physics, Flatiron Institute, New York
    NY
    10010, United States
    不详
    34136, Italy
    不详
    34136, Italy
    不详
    NY
    14623, United States
    Phys. Rev. Res., 2643, 3
  • [2] Time-dependent and steady-state Gutzwiller approach for nonequilibrium transport in nanostructures
    Lanata, Nicola
    Strand, Hugo U. R.
    PHYSICAL REVIEW B, 2012, 86 (11):
  • [3] Linear-response dynamics from the time-dependent Gutzwiller approximation
    Buenemann, J.
    Capone, M.
    Lorenzana, J.
    Seibold, G.
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [4] Time-dependent nonequilibrium dynamics in QM/continuum approaches
    Ding, Feizhi
    Lingerfelt, David
    Mennucci, Benedetta
    Li, Xiaosong
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [5] Optimal time-dependent lattice models for nonequilibrium dynamics
    Sakmann, Kaspar
    Streltsov, Alexej I.
    Alon, Ofir E.
    Cederbaum, Lorenz S.
    NEW JOURNAL OF PHYSICS, 2011, 13
  • [6] Time-Dependent Gutzwiller Approximation: Interplay with Phonons
    Seibold, G.
    Buenemann, J.
    Lorenzana, J.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2014, 27 (04) : 929 - 931
  • [7] Time-Dependent Gutzwiller Approximation: Theory and Applications
    Noatschk, K.
    Martens, C.
    Seibold, G.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2020, 33 (08) : 2389 - 2393
  • [8] Time-Dependent Gutzwiller Approximation: Theory and Applications
    K. Noatschk
    C. Martens
    G. Seibold
    Journal of Superconductivity and Novel Magnetism, 2020, 33 : 2389 - 2393
  • [9] Time-dependent Gutzwiller approximation for the Hubbard model
    Seibold, G
    Lorenzana, J
    PHYSICAL REVIEW LETTERS, 2001, 86 (12) : 2605 - 2608
  • [10] Time-Dependent Gutzwiller Approximation: Interplay with Phonons
    G. Seibold
    J. Bünemann
    J. Lorenzana
    Journal of Superconductivity and Novel Magnetism, 2014, 27 : 929 - 931