Time-dependent ghost Gutzwiller nonequilibrium dynamics

被引:5
|
作者
Guerci, Daniele [1 ]
Capone, Massimo [2 ,3 ]
Lanata, Nicola [1 ,4 ]
机构
[1] Flatiron Inst, Ctr Computat Quantum Phys, New York, NY 10010 USA
[2] Scuola Int Super Studi Avanzati SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[3] CNR, Ist Officina Materiali, CNR IOM, Via Bonomea 265, I-34136 Trieste, Italy
[4] Rochester Inst Technol, Sch Phys & Astron, 84 Lomb Mem Dr, Rochester, NY 14623 USA
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 03期
关键词
MEAN-FIELD THEORY; HUBBARD; APPROXIMATION; SYSTEMS; PHYSICS; ATOMS;
D O I
10.1103/PhysRevResearch.5.L032023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce the time-dependent ghost Gutzwiller approximation (TD-gGA), a nonequilibrium extension of the ghost Gutzwiller approximation (gGA), a powerful variational approach which systematically improves on the standard Gutzwiller method by including auxiliary degrees of freedom. We demonstrate the effectiveness of TD-gGA by studying the quench dynamics of the single-band Hubbard model as a function of the number of auxiliary parameters. Our results show that TD-gGA captures the relaxation of local observables, in contrast with the time-dependent Gutzwiller method. This systematic and qualitative improvement leads to an accuracy comparable with time-dependent dynamical mean-field theory which comes at a much lower computational cost. These findings suggest that TD-gGA has the potential to enable extensive and accurate theoretical investigations of multiorbital correlated electron systems in nonequilibrium situations, with potential applications in the field of quantum control, Mott solar cells, and other areas where an accurate account of the nonequilibrium properties of strongly interacting quantum systems is required.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Time-dependent Gutzwiller theory of pair fluctuations in the Hubbard model
    Guenther, Falk
    Seibold, Goetz
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2007, 460 (1041-1042): : 1041 - 1042
  • [22] Time-dependent Gutzwiller theory of pairing fluctuations in the Hubbard model
    Seibold, G.
    Becca, F.
    Lorenzana, J.
    PHYSICAL REVIEW B, 2008, 78 (04)
  • [23] Exact response functions within the time-dependent Gutzwiller approach
    Buenemann, J.
    Wasner, S.
    von Oelsen, E.
    Seibold, G.
    PHILOSOPHICAL MAGAZINE, 2015, 95 (5-6) : 550 - 562
  • [24] Excitation dynamics in a lattice Bose gas within the time-dependent Gutzwiller mean-field approach
    Krutitsky, Konstantin V.
    Navez, Patrick
    PHYSICAL REVIEW A, 2011, 84 (03):
  • [25] Stability of ferromagnetism within the time-dependent Gutzwiller approximation for the Hubbard model
    Guenther, F.
    Seibold, G.
    Lorenzana, J.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2011, 248 (02): : 339 - 351
  • [26] Real-Time Time-Dependent Density Functional Theory for Simulating Nonequilibrium Electron Dynamics
    Xu, Jianhang
    Carney, Thomas E.
    Zhou, Ruiyi
    Shepard, Christopher
    Kanai, Yosuke
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (08) : 5011 - 5029
  • [27] Time-Resolved Probing of the Nonequilibrium Structural Solvation Dynamics by the Time-Dependent Stokes Shift
    Kirchberg, Henning
    Thorwart, Michael
    JOURNAL OF PHYSICAL CHEMISTRY B, 2020, 124 (27): : 5717 - 5722
  • [28] Nonequilibrium fluctuations in time-dependent diffusion precesses
    Vailati, A
    Giglio, M
    PHYSICAL REVIEW E, 1998, 58 (04): : 4361 - 4371
  • [29] Time-dependent Gutzwiller theory for multi-band Hubbard models
    von Oelsen, E.
    Seibold, G.
    Buenemann, J.
    NEW JOURNAL OF PHYSICS, 2011, 13
  • [30] Nonequilibrium dynamics of multiorbital correlated electron system under time-dependent electric fields
    Onishi, Hiroaki
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2013, 250 (03): : 553 - 556