The Relativistic Quantum Boltzmann Equation Near Equilibrium

被引:0
|
作者
Gi-Chan Bae
Jin Woo Jang
Seok-Bae Yun
机构
[1] Seoul National University,Department of Mathematical Sciences
[2] University of Bonn,Institute for Applied Mathematics
[3] Sungkyunkwan University,Department of mathematics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The relativistic quantum Boltzmann equation (or the relativistic Uehling–Uhlenbeck equation) describes the dynamics of single-species fast-moving quantum particles. With the recent development of relativistic quantum mechanics, the relativistic quantum Boltzmann equation has been widely used in physics and engineering, for example in the quantum collision experiments and the simulations of electrons in graphene. In spite of such importance, there has, to the best of our knowledge, been no mathematical theory on the existence of solutions to the relativistic quantum Boltzmann equation. In this paper, we prove the global existence of a unique classical solution to the relativistic Boltzmann equation for both bosons and fermions, when the initial distribution is nearby a global equilibrium.
引用
收藏
页码:1593 / 1644
页数:51
相关论文
共 50 条
  • [31] On the Determinant Problem for the Relativistic Boltzmann Equation
    James Chapman
    Jin Woo Jang
    Robert M. Strain
    Communications in Mathematical Physics, 2021, 384 : 1913 - 1943
  • [32] The Newtonian limit of the relativistic Boltzmann equation
    Calogero, S
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (11) : 4042 - 4052
  • [33] Theory and applications of the relativistic Boltzmann equation
    Kremer, Gilberto M.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2014, 11 (02)
  • [34] CAUCHY PROBLEM FOR RELATIVISTIC BOLTZMANN EQUATION
    BANCEL, D
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1970, 270 (25): : 1710 - &
  • [35] An Inverse Problem for the Relativistic Boltzmann Equation
    Tracey Balehowsky
    Antti Kujanpää
    Matti Lassas
    Tony Liimatainen
    Communications in Mathematical Physics, 2022, 396 : 983 - 1049
  • [36] The relativistic Boltzmann equation for soft potentials
    Duan, Renjun
    Yu, Hongjun
    ADVANCES IN MATHEMATICS, 2017, 312 : 315 - 373
  • [37] CAUCHY PROBLEM FOR RELATIVISTIC BOLTZMANN EQUATION
    BANCEL, D
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1970, 271 (14): : 694 - &
  • [38] On the Determinant Problem for the Relativistic Boltzmann Equation
    Chapman, James
    Jang, Jin Woo
    Strain, Robert M.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 384 (03) : 1913 - 1943
  • [40] An Inverse Problem for the Relativistic Boltzmann Equation
    Balehowsky, Tracey
    Kujanpaa, Antti
    Lassas, Matti
    Liimatainen, Tony
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 396 (03) : 983 - 1049