Complete minimal submanifolds of compact Lie groups

被引:0
|
作者
Sigmundur Gudmundsson
Martin Svensson
Marina Ville
机构
[1] Lund University,Department of Mathematics, Faculty of Science
[2] University of Southern Denmark,Department of Mathematics and Computer Science
[3] Université F. Rabelais,Départment de Mathématiques
来源
Mathematische Zeitschrift | 2016年 / 282卷
关键词
Harmonic morphisms; Minimal submanifolds; Lie groups; 58E20; 53C43; 53C12;
D O I
暂无
中图分类号
学科分类号
摘要
We give a new method for manufacturing complete minimal submanifolds of compact Lie groups and their homogeneous quotient spaces. For this we make use of harmonic morphisms and basic representation theory of Lie groups. We then employ our method to construct many examples of compact minimal submanifolds of the special unitary groups.
引用
收藏
页码:993 / 1005
页数:12
相关论文
共 50 条
  • [21] Rigidity of complete minimal submanifolds in a hyperbolic space
    Hudson Pina de Oliveira
    Changyu Xia
    manuscripta mathematica, 2019, 158 : 21 - 30
  • [22] TRANSFER AND COMPACT LIE GROUPS
    FESHBACH, M
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (03) : 372 - 374
  • [23] Complete Minimal Submanifolds with Nullity in the Hyperbolic Space
    Dajczer, Marcos
    Kasioumis, Theodoros
    Savas-Halilaj, Andreas
    Vlachos, Theodoros
    JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (01) : 413 - 427
  • [24] IMBEDDING OF COMPACT LIE GROUPS
    MANN, LN
    SICKS, JL
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1971, 20 (07) : 655 - &
  • [25] On multipliers on compact Lie groups
    Ruzhansky, M. V.
    Wirth, J.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2013, 47 (01) : 72 - 75
  • [26] Complete minimal submanifolds with nullity in Euclidean space
    Dajczer, Marcos
    Kasioumis, Theodoros
    Savas-Halilaj, Andreas
    Vlachos, Theodoros
    MATHEMATISCHE ZEITSCHRIFT, 2017, 287 (1-2) : 481 - 491
  • [27] Complete Minimal Submanifolds with Nullity in the Hyperbolic Space
    Marcos Dajczer
    Theodoros Kasioumis
    Andreas Savas-Halilaj
    Theodoros Vlachos
    The Journal of Geometric Analysis, 2019, 29 : 413 - 427
  • [29] Acceptable Compact Lie Groups
    Jun Yu
    Peking Mathematical Journal, 2022, 5 (2) : 427 - 446
  • [30] On multipliers on compact Lie groups
    M. V. Ruzhansky
    J. Wirth
    Functional Analysis and Its Applications, 2013, 47 : 72 - 75