On an Anisotropic Eigenvalue Problem

被引:0
|
作者
Zhenhai Liu
Nikolaos S. Papageorgiou
机构
[1] Yulin Normal University,Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing
[2] Guangxi Minzu University,Guangxi Key Laboratory of Universities Optimization Control and Engineering Calculation, College of Mathematics and Physics
[3] National Technical University,Department of Mathematics
来源
Results in Mathematics | 2023年 / 78卷
关键词
Variable Lebesgue and Sobolev spaces; truncations and comparisons; positive solutions; minimal solutions; bifurcation-type theorem; 35J10; 35J70;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a nonlinear eigenvalue problem driven by the anisotropic (p, q)-Laplacian. Using variational tools and truncation and comparison techniques, we show the existence of a continuous spectrum (a bifurcation-type theorem). We also show the existence of a minimal positive solution and determine the properties of the minimal solution map.
引用
收藏
相关论文
共 50 条
  • [1] On an Anisotropic Eigenvalue Problem
    Liu, Zhenhai
    Papageorgiou, Nikolaos S.
    RESULTS IN MATHEMATICS, 2023, 78 (05)
  • [2] An eigenvalue problem for the anisotropic Φ-Laplacian
    Alberico, A.
    Blasio, G. di
    Feo, F.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (06) : 4853 - 4883
  • [3] A NONLOCAL ANISOTROPIC EIGENVALUE PROBLEM
    Piscitelli, Gianpaolo
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2016, 29 (11-12) : 1001 - 1020
  • [4] On a weighted anisotropic eigenvalue problem
    Gavitone, Nunzia
    Sannipoli, Rossano
    GLASGOW MATHEMATICAL JOURNAL, 2025, 67 (01) : 72 - 85
  • [5] On an eigenvalue problem for the anisotropic strip
    Aghalovyan, M
    TOPICS IN ANALYSIS AND ITS APPLICATIONS, 2004, 147 : 397 - 401
  • [6] On An Eigenvalue Problem For An Anisotropic Elliptic Equation
    Taarabti, Said
    El Allali, Zakaria
    Ben Haddouch, Khalil
    2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, ICAM'2018, 2019, 2074
  • [7] THE EIGENVALUE PROBLEM IN WAVEGUIDE FILLED WITH ANISOTROPIC MEDIUM
    吴绍平
    ScienceinChina,SerA., 1976, Ser.A.1976 (01) : 21 - 34
  • [8] THE EIGENVALUE PROBLEM IN WAVEGUIDE FILLED WITH ANISOTROPIC MEDIUM
    吴绍平
    Science China Mathematics, 1976, (01) : 21 - 34
  • [9] An eigenvalue problem involving an anisotropic differential operator
    Farcaseanu, Maria
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2017, 62 (03) : 297 - 306
  • [10] EIGENVALUE PROBLEM IN WAVEGUIDE FILLED WITH ANISOTROPIC MEDIUM
    SHAOPING, W
    SCIENTIA SINICA, 1976, 19 (01): : 21 - 34