An Overview of Hydrogel-Based Bioinks for 3D Bioprinting of Soft Tissues

被引:0
|
作者
Soumitra Das
Bikramjit Basu
机构
[1] Indian Institute of Science,Materials Research Centre
关键词
3D bioprinting; Bioink; Hydrogels; Tissue and organ fabrication;
D O I
暂无
中图分类号
学科分类号
摘要
It has been widely perceived that three-dimensional bioprinted synthetic tissues and organ can be a clinical treatment option for damaged or diseased tissue repair and replacement. Conventional tissue engineering approaches have limited control over the regeneration of scaffold geometries and cell distribution. With the advancement of new biomaterials and additive manufacturing techniques, it is possible to develop physiologically relevant functional tissues or organs with living cells, bioactive molecules and growth factors within predefined complex 3D geometries. In this perspective, this review discusses how hydrogel-based bioinks can be used to mimic native tissue-like extracellular matrix environment, with optimal mechanical and structural integrity for patient-specific tissue regeneration, in reference to advanced bioprinting technologies to bioprint multitude of multicomponent bioinks. This review also summarizes various bioprinting techniques, the gelation and biodegradation mechanisms of hydrogel-based bioinks, the properties required for ideal bioink, challenges to design bioinks, as well as reviews the fabrication of 3D printed cardiac tissue, cartilages, brain-like tissue, bionic ear, and urinary system.
引用
收藏
页码:405 / 428
页数:23
相关论文
共 50 条
  • [21] Engineering bioinks for 3D bioprinting
    Decante, Guy
    Costa, Joao B.
    Silva-Correia, Joana
    Collins, Maurice N.
    Reis, Rui L.
    Oliveira, J. Miguel
    BIOFABRICATION, 2021, 13 (03)
  • [22] Engineering of hydrogel-based bioinks for the fabrication of cell-laden 3D constructs
    Malda, J.
    HUMAN GENE THERAPY, 2013, 24 (12) : A27 - A27
  • [23] Silk-Based Bioinks for 3D Bioprinting
    Chawla, Shikha
    Midha, Swati
    Sharma, Aarushi
    Ghosh, Sourabh
    ADVANCED HEALTHCARE MATERIALS, 2018, 7 (08)
  • [24] Hydrogel-Based 3D Bioprinting Technology for Articular Cartilage Regenerative Engineering
    Zhang, Hongji
    Zhou, Zheyuan
    Zhang, Fengjie
    Wan, Chao
    GELS, 2024, 10 (07)
  • [25] Recent Advancements of Bioinks for 3D Bioprinting of Human Tissues and Organs
    He, Wen
    Deng, Jinjun
    Ma, Binghe
    Tao, Kai
    Zhang, Zhi
    Ramakrishna, Seeram
    Yuan, Weizheng
    Ye, Tao
    ACS APPLIED BIO MATERIALS, 2023, 7 (01) : 17 - 43
  • [26] Collagen Bioinks for 3D Bioprinting
    Bagley, B.
    TISSUE ENGINEERING PART A, 2017, 23 : S57 - S57
  • [27] Nanocomposite bioinks for 3D bioprinting
    Cai, Yanli
    Chang, Soon Yee
    Gan, Soo Wah
    Ma, Sha
    Lu, Wen Feng
    Yen, Ching-Chiuan
    Acta Biomaterialia, 2022, 151 : 45 - 69
  • [28] Nanocomposite bioinks for 3D bioprinting
    Cai, Yanli
    Chang, Soon Yee
    Gan, Soo Wah
    Ma, Sha
    Lu, Wen Feng
    Yen, Ching-Chiuan
    ACTA BIOMATERIALIA, 2022, 151 : 45 - 69
  • [29] DEVELOPMENT OF THAI SILK FIBROIN-BASED HYDROGEL BIOINKS FOR 3D BIOPRINTING APPLICATIONS
    Ratanavaraporn, Juthamas
    Pudkon, Watcharapong
    Laomeephol, Chavee
    Damrongsakkul, Siriporn
    TISSUE ENGINEERING PART A, 2022, 28 : S107 - S108
  • [30] 3D bioprinting of dynamic hydrogel bioinks enabled by small molecule modulators
    Hull, Sarah M.
    Lou, Junzhe
    Lindsay, Christopher D.
    Navarro, Renato S.
    Cai, Betty
    Brunel, Lucia G.
    Westerfield, Ashley D.
    Xia, Yan
    Heilshorn, Sarah C.
    SCIENCE ADVANCES, 2023, 9 (13)