Leading coefficients of Kazhdan–Lusztig polynomials and fully commutative elements

被引:0
|
作者
R. M. Green
机构
[1] University of Colorado,Department of Mathematics
来源
关键词
Kazhdan–Lusztig polynomials; Affine Weyl groups; Fully commutative elements; 0–1 conjecture;
D O I
暂无
中图分类号
学科分类号
摘要
Let W be a Coxeter group of type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{A}_{n-1}$\end{document} . We show that the leading coefficient, μ(x,w), of the Kazhdan–Lusztig polynomial Px,w is always equal to 0 or 1 if x is fully commutative (and w is arbitrary).
引用
收藏
页码:165 / 171
页数:6
相关论文
共 50 条
  • [21] Kazhdan-Lusztig polynomials of thagomizer matroids
    Gedeon, Katie R.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (03):
  • [22] Kazhdan-lusztig polynomials and canonical basis
    Frenkel I.B.
    Khovanov M.G.
    Kirillov Jr. A.A.
    Transformation Groups, 1998, 3 (4) : 321 - 336
  • [23] The Kazhdan-Lusztig polynomials of uniform matroids
    Gao, Alice L. L.
    Lu, Linyuan
    Xie, Matthew H. Y.
    Yang, Arthur L. B.
    Zhang, Philip B.
    ADVANCES IN APPLIED MATHEMATICS, 2021, 122
  • [24] On the combinatorial invariance of Kazhdan-Lusztig polynomials
    Incitti, Federico
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (07) : 1332 - 1350
  • [25] Kazhdan-Lusztig polynomials and drift configurations
    Li, Li
    Yong, Alexander
    ALGEBRA & NUMBER THEORY, 2011, 5 (05) : 595 - 626
  • [26] Construction of arbitrary Kazhdan-Lusztig polynomials
    Polo, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (04): : 281 - 285
  • [27] The combinatorics behind the leading Kazhdan-Lusztig coefficients ffi cients of braid matroids
    Gao, Alice L. L.
    Yang, Arthur L. B.
    Proudfoot, Nicholas
    Zhang, Zhong-Xue
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (03):
  • [28] A DECOMPOSITION OF R-POLYNOMIALS AND KAZHDAN-LUSZTIG POLYNOMIALS
    TAGAWA, H
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1995, 71 (06) : 107 - 108
  • [29] Quasisymmetric functions and Kazhdan-Lusztig polynomials
    Louis J. Billera
    Francesco Brenti
    Israel Journal of Mathematics, 2011, 184 : 317 - 348
  • [30] A COMBINATORIAL FORMULA FOR KAZHDAN-LUSZTIG POLYNOMIALS
    BRENTI, F
    INVENTIONES MATHEMATICAE, 1994, 118 (02) : 371 - 394