The Cesàro operator on smooth sequence spaces of finite type

被引:0
|
作者
Ersin Kızgut
机构
[1] Instituto Universitario de Matemática Pura y Aplicada (IUMPA),
[2] Universitat Politècnica de València,undefined
关键词
Cesàro operator; Smooth sequence spaces of finite type; Generalized power series spaces; Spectrum; Fréchet space; 47A10; 47B37; 46A45; 46A04;
D O I
暂无
中图分类号
学科分类号
摘要
The discrete Cesàro operator C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {C}$$\end{document} is investigated in the class of smooth sequence spaces λ0(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _0(A)$$\end{document} of finite type. This class contains properly the power series spaces of finite type. Of main interest is its spectrum, which is distinctly different in the cases when λ0(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _0(A)$$\end{document} is nuclear and when it is not. The nuclearity of λ0(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _0(A)$$\end{document} is characterized via certain properties of the spectrum of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {C}$$\end{document}. Moreover, C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {C}$$\end{document} is always power bounded and uniformly mean ergodic on λ0(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _0(A)$$\end{document}.
引用
收藏
页码:1747 / 1763
页数:16
相关论文
共 50 条
  • [31] Mappings of type Orlicz and generalized Cesáro sequence space
    Nashat F Mohamed
    Awad A Bakery
    Journal of Inequalities and Applications, 2013 (1)
  • [32] Cesàro wedge and weak Cesàro wedge FK-spaces
    H. G. İnce
    Czechoslovak Mathematical Journal, 2002, 52 : 141 - 154
  • [33] Compact Matrix Operators Between Some Cesàro Weighted Sequence Spaces
    Ivana Djolović
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 1667 - 1677
  • [34] Spectra and dynamics of generalized Cesàro operators in (LF) and (PLB) sequence spaces
    Albanese, Angela A.
    Asensio, Vicente
    POSITIVITY, 2024, 28 (03)
  • [35] Geometry of Cesàro function spaces
    S. V. Astashkin
    L. Maligranda
    Functional Analysis and Its Applications, 2011, 45 : 64 - 68
  • [36] Quotients, ∞ and abstract Cesàro spaces
    Kiwerski, Tomasz
    Kolwicz, Pawel
    Tomaszewski, Jakub
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas, 2022, 116 (03)
  • [37] Cesàro-type operators on Hardy, BMOA and bloch spaces
    Jie Xiao
    Archiv der Mathematik, 1997, 68 : 398 - 406
  • [38] RKH spaces of Brownian type defined by Cesàro–Hardy operators
    José E. Galé
    Pedro J. Miana
    Luis Sánchez–Lajusticia
    Analysis and Mathematical Physics, 2021, 11
  • [39] Composition of the Cesàro Operator and Its Transpose
    Hadi Roopaei
    Mediterranean Journal of Mathematics, 2023, 20
  • [40] The dyadic Cesàro operator on R+
    Eisner T.
    Schipp F.
    Analysis Mathematica, 2000, 26 (4) : 263 - 274