Predicting yellow rust in wheat breeding trials by proximal phenotyping and machine learning

被引:0
|
作者
Alexander Koc
Firuz Odilbekov
Marwan Alamrani
Tina Henriksson
Aakash Chawade
机构
[1] Swedish University of Agricultural Sciences,Department of Plant Breeding
[2] Lantmännen Lantbruk,undefined
来源
Plant Methods | / 18卷
关键词
High-throughput phenotyping; Plant breeding; Yellow rust; Field phenotyping; Spectral vegetation index; Low-cost phenotyping; Winter wheat; Disease resistance;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Predicting Heritability of Oil Palm Breeding Using Phenotypic Traits and Machine Learning
    Ahmad Latif, Najihah
    Mohd Nain, Fatini Nadhirah
    Ahamed Hassain Malim, Nurul Hashimah
    Abdullah, Rosni
    Abdul Rahim, Muhammad Farid
    Mohamad, Mohd Nasruddin
    Mohamad Fauzi, Nurul Syafika
    SUSTAINABILITY, 2021, 13 (22)
  • [32] Differential Gene Expression Analysis of Wheat Breeding Lines Reveal Molecular Insights in Yellow Rust Resistance under Field Conditions
    Kumar Kushwaha, Sandeep
    Vetukuri, Ramesh R.
    Odilbekov, Firuz
    Pareek, Nidhi
    Henriksson, Tina
    Chawade, Aakash
    AGRONOMY-BASEL, 2020, 10 (12):
  • [33] Seedling and Adult Plant Resistance Against Powdery Mildew and Yellow Rust in Indian Advanced Wheat Breeding Material and Commercial Genotypes
    Mehta, Amritpal
    Basandrai, Ashwani Kumar
    Basandrai, Daisy
    Dhillon, Harneet Kaur
    Puren, Heresh
    JOURNAL OF CROP HEALTH, 2024, 76 (06) : 1403 - 1431
  • [34] Predicting resistance to stripe (yellow) rust (Puccinia striiformis) in wheat genetic resources using focused identification of germplasm strategy
    Bari, A.
    Amri, A.
    Street, K.
    Mackay, M.
    De Pauw, E.
    Sanders, R.
    Nazari, K.
    Humeid, B.
    Konopka, J.
    Alo, F.
    JOURNAL OF AGRICULTURAL SCIENCE, 2014, 152 (06): : 906 - 916
  • [35] Detecting the Minimum Limit on Wheat Stripe Rust in the Latent Period Using Proximal Remote Sensing Coupled with Duplex Real-Time PCR and Machine Learning
    Liu, Qi
    Sun, Tingting
    Wen, Xiaojie
    Zeng, Minghao
    Chen, Jing
    PLANTS-BASEL, 2023, 12 (15):
  • [36] Detection of Leek Rust Disease under Field Conditions Using Hyperspectral Proximal Sensing and Machine Learning
    Appeltans, Simon
    Pieters, Jan G.
    Mouazen, Abdul M.
    REMOTE SENSING, 2021, 13 (07)
  • [37] Improving wheat yield prediction integrating proximal sensing and weather data with machine learning
    Ruan, Guojie
    Li, Xinyu
    Yuan, Fei
    Cammarano, Davide
    Ata-UI-Karim, Syed Tahir
    Liu, Xiaojun
    Tian, Yongchao
    Zhu, Yan
    Cao, Weixing
    Cao, Qiang
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 195
  • [38] Leveraging soil mapping and machine learning to improve spatial adjustments in plant breeding trials
    Carroll, Matthew E.
    Riera, Luis G.
    Miller, Bradley A.
    Dixon, Philip M.
    Ganapathysubramanian, Baskar
    Sarkar, Soumik
    Singh, Asheesh K.
    CROP SCIENCE, 2024, 64 (06) : 3135 - 3152
  • [39] An evaluation of machine-learning for predicting phenotype: studies in yeast, rice, and wheat
    Nastasiya F. Grinberg
    Oghenejokpeme I. Orhobor
    Ross D. King
    Machine Learning, 2020, 109 : 251 - 277
  • [40] An evaluation of machine-learning for predicting phenotype: studies in yeast, rice, and wheat
    Grinberg, Nastasiya F.
    Orhobor, Oghenejokpeme I.
    King, Ross D.
    MACHINE LEARNING, 2020, 109 (02) : 251 - 277