Identifying homogeneous subgroups of patients and important features: a topological machine learning approach

被引:0
|
作者
Ewan Carr
Mathieu Carrière
Bertrand Michel
Frédéric Chazal
Raquel Iniesta
机构
[1] King’s College London,Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience
[2] DataShape Team,Inria Sophia
[3] LMJL – UMR CNRS 6629,Antipolis
[4] Alan Turing Building,Ecole Centrale de Nantes
来源
关键词
Topological data analysis; Clustering; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Machine learning fMRI classifier delineates subgroups of schizophrenia patients
    Bleich-Cohen, Maya
    Jamshy, Shahar
    Sharon, Haggai
    Weizman, Ronit
    Intrator, Nathan
    Poyurovsky, Michael
    Hendler, Talma
    [J]. SCHIZOPHRENIA RESEARCH, 2014, 160 (1-3) : 196 - 200
  • [42] Identifying important features for intrusion detection using discriminant analysis and support vector machine
    Wong, Wai-Tak
    Lai, Cheng-Yang
    [J]. PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 3563 - +
  • [43] A Machine Learning Approach to Musically Meaningful Homogeneous Style Classification
    Herlands, William
    Der, Ricky
    Greenberg, Yoel
    Levin, Simon
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 276 - 282
  • [44] Hybrid extreme learning machine approach for homogeneous neural networks
    Christou, Vasileios
    Tsipouras, Markos G.
    Giannakeas, Nikolalos
    Tzallas, Alexandros T.
    [J]. NEUROCOMPUTING, 2018, 311 : 397 - 412
  • [45] Identifying Autism with Head Movement Features by Implementing Machine Learning Algorithms
    Zhao, Zhong
    Zhu, Zhipeng
    Zhang, Xiaobin
    Tang, Haiming
    Xing, Jiayi
    Hu, Xinyao
    Lu, Jianping
    Qu, Xingda
    [J]. JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS, 2022, 52 (07) : 3038 - 3049
  • [46] Identifying Autism with Head Movement Features by Implementing Machine Learning Algorithms
    Zhong Zhao
    Zhipeng Zhu
    Xiaobin Zhang
    Haiming Tang
    Jiayi Xing
    Xinyao Hu
    Jianping Lu
    Xingda Qu
    [J]. Journal of Autism and Developmental Disorders, 2022, 52 : 3038 - 3049
  • [47] Can machine learning model with static features be fooled: an adversarial machine learning approach
    Rahim Taheri
    Reza Javidan
    Mohammad Shojafar
    P. Vinod
    Mauro Conti
    [J]. Cluster Computing, 2020, 23 : 3233 - 3253
  • [48] Can machine learning model with static features be fooled: an adversarial machine learning approach
    Taheri, Rahim
    Javidan, Reza
    Shojafar, Mohammad
    Vinod, P.
    Conti, Mauro
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2020, 23 (04): : 3233 - 3253
  • [49] A new approach to identifying patients with elevated risk for Fabry disease using a machine learning algorithm
    John L. Jefferies
    Alison K. Spencer
    Heather A. Lau
    Matthew W. Nelson
    Joseph D. Giuliano
    Joseph W. Zabinski
    Costas Boussios
    Gary Curhan
    Richard E. Gliklich
    David G. Warnock
    [J]. Orphanet Journal of Rare Diseases, 16
  • [50] Identifying Disease - Treatment Relations using Machine Learning Approach
    Keerrthega, M. C.
    Thenmozhi, D.
    [J]. FOURTH INTERNATIONAL CONFERENCE ON RECENT TRENDS IN COMPUTER SCIENCE & ENGINEERING (ICRTCSE 2016), 2016, 87 : 306 - 315