The Simultaneous Fractional Dimension of Graph Families

被引:0
|
作者
Cong X. Kang
Iztok Peterin
Eunjeong Yi
机构
[1] Texas A&M University at Galveston,
[2] University of Maribor,undefined
[3] Texas A&M University at Galveston,undefined
关键词
Metric dimension; fractional metric dimension; resolving function; simultaneous (metric) dimension; simultaneous fractional (metric) dimension; 05C12; 05C72;
D O I
暂无
中图分类号
学科分类号
摘要
For a connected graph G with vertex set V, let RG{x, y} = {z ∈ V: dG(x, z) ≠ dG(y, z)} for any distinct x, y ∈ V, where dG(u, w) denotes the length of a shortest uw-path in G. For a real-valued function g defined on V, let g(V) = ∑s∈Vg(s). Let C={G1,G2,…,Gk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal C} = \{{G_1},{G_2}, \ldots ,{G_k}\} $$\end{document} be a family of connected graphs having a common vertex set V, where k ≥ 2 and ∣V∣≥ 3. A real-valued function h: V → [0, 1] is a simultaneous resolving function of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal C}$$\end{document} if h(RG{x, y}) ≥ 1 for any distinct vertices x, y ∈ V and for every graph G∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \in {\cal C}$$\end{document}. The simultaneous fractional dimension, Sdf(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{S}}{{\rm{d}}_f}({\cal C})$$\end{document}, of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal C}$$\end{document} is min{h(V): h is a simultaneous resolving function of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal C}$$\end{document}}. In this paper, we initiate the study of the simultaneous fractional dimension of a graph family. We obtain max1≤i≤k{dimf(Gi)}≤Sdf(C)≤min{∑i=1kdimf(Gi),|V|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\max _{1 \le i \le k}}\{{\dim _f}({G_i})\} \le {\rm{S}}{{\rm{d}}_f}({\cal C}) \le \min \{\sum\nolimits_{i = 1}^k {{{\dim}_f}({G_i}),{{|V|} \over 2}} $$\end{document}, where both bounds are sharp. We characterize C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal C}$$\end{document} satisfying Sdf(C)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{S}}{{\rm{d}}_f}({\cal C}) = 1$$\end{document}, examine C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal C}$$\end{document} satisfying Sdf(C)=|V|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{S}}{{\rm{d}}_f}({\cal C}) = {{|V|} \over 2}$$\end{document}, and determine Sdf(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{S}}{{\rm{d}}_f}({\cal C})$$\end{document} when C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal C}$$\end{document} is a family of vertex-transitive graphs. We also obtain some results on the simultaneous fractional dimension of a graph and its complement.
引用
收藏
页码:1425 / 1441
页数:16
相关论文
共 50 条
  • [1] The Simultaneous Fractional Dimension of Graph Families
    Cong X.KANG
    Iztok PETERIN
    Eunjeong YI
    [J]. Acta Mathematica Sinica,English Series, 2023, (08) : 1425 - 1441
  • [2] The Simultaneous Fractional Dimension of Graph Families
    Kang, Cong X.
    Peterin, Iztok
    Yi, Eunjeong
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (08) : 1425 - 1441
  • [3] The simultaneous metric dimension of graph families
    Ramirez-Cruz, Yunior
    Oellermann, Ortrud R.
    Rodriguez-Velazquez, Juan A.
    [J]. DISCRETE APPLIED MATHEMATICS, 2016, 198 : 241 - 250
  • [4] The Simultaneous Strong Metric Dimension of Graph Families
    Estrada-Moreno, A.
    Garcia-Gomez, C.
    Ramirez-Cruz, Y.
    Rodriguez-Velazquez, J. A.
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 : S175 - S192
  • [5] The Simultaneous Local Metric Dimension of Graph Families
    Barragan-Ramirez, Gabriel A.
    Estrada-Moreno, Alejandro
    Ramirez-Cruz, Yunior
    Rodriguez-Velazquez, Juan A.
    [J]. SYMMETRY-BASEL, 2017, 9 (08):
  • [6] The Simultaneous Strong Metric Dimension of Graph Families
    A. Estrada-Moreno
    C. García-Gómez
    Y. Ramírez-Cruz
    J. A. Rodríguez-Velázquez
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 175 - 192
  • [7] The Simultaneous Strong Resolving Graph and the Simultaneous Strong Metric Dimension of Graph Families
    Gonzalez Yero, Ismael
    [J]. MATHEMATICS, 2020, 8 (01)
  • [8] On Adjacency Metric Dimension of Some Families of Graph
    Koam, Ali N. A.
    Ahmad, Ali
    Azeem, Muhammad
    Khalil, Adnan
    Nadeem, Muhammad Faisal
    [J]. JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [9] Hausdorff dimension of the graph of the Fractional Brownian Sheet
    Ayache, A
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2004, 20 (02) : 395 - 412
  • [10] Fractional Metric Dimension of Tree and Unicyclic Graph
    Krismanto, Daniel A.
    Saputro, Suhadi Wido
    [J]. 2ND INTERNATIONAL CONFERENCE OF GRAPH THEORY AND INFORMATION SECURITY, 2015, 74 : 47 - 52