Hausdorff dimension of the graph of the Fractional Brownian Sheet

被引:0
|
作者
Ayache, A
机构
[1] Univ Toulouse 3, CNRS, UMR C 5583, UFR MIG,Lab Stat & Probabil, F-31062 Toulouse, France
[2] ENS, UMR 8536, Ctr Math & Leurs Applicat, F-94235 Cachan, France
关键词
gaussian fields; fractional Brownian motion; random wavelet series; Hausdorff dimension; packing dimension;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {B-(alpha)(t)}(tis an element ofR)(d), be the Fractional Brownian Sheet with multi-index alpha = (alpha(1),..., a(d)), 0 < a(i) < 1. In [14], Kamont has shown that, with probability 1, the box dimension of the graph of a trajectory of this Gaussian field, over a non-degenerate cube Q subset of R-d is equal to d + 1 - min (alpha(1),..., alpha(d)) - In this paper, we prove that this result remains true when the box dimension is replaced by the Hausdorff dimension or the packing dimension.
引用
收藏
页码:395 / 412
页数:18
相关论文
共 50 条