Global Attractor for a Nonlinear Oscillator Coupled to the Klein–Gordon Field

被引:0
|
作者
Alexander Komech
Andrew Komech
机构
[1] Faculty of Mathematics,Mathematics Department
[2] Texas A&M University,On leave from Department of Mechanics and Mathematics
[3] Moscow State University,undefined
关键词
Cauchy Problem; Solitary Wave; Global Attractor; Gordon Equation; Nonlinear Wave Equation;
D O I
暂无
中图分类号
学科分类号
摘要
The long-time asymptotics is analyzed for all finite energy solutions to a model \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{U}(1)$$\end{document}-invariant nonlinear Klein–Gordon equation in one dimension, with the nonlinearity concentrated at a single point: each finite energy solution converges as t→ ± ∞ to the set of all “nonlinear eigenfunctions” of the form ψ(x)e−iω t. The global attraction is caused by the nonlinear energy transfer from lower harmonics to the continuous spectrum and subsequent dispersive radiation.
引用
收藏
页码:105 / 142
页数:37
相关论文
共 50 条