On Kolmogorov-Type Inequalities Taking into Account the Number of Changes in the Sign of Derivatives

被引:0
|
作者
V. A. Kofanov
机构
[1] Dnepropetrovsk University,
关键词
Trigonometric Polynomial; Perfect Spline;
D O I
10.1023/B:UKMA.0000010156.34711.7b
中图分类号
学科分类号
摘要
For 2π-periodic functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$x \in L_\infty ^r $$ \end{document} and arbitrary q ∈ [1, ∞] and p ∈ (0, ∞], we obtain the new exact Kolmogorov-type inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$|| x^(k) ||_q \leqslant (\frac{v(x^(k))}{2})^{1/q} \frac{|| \phi_{r-k} ||_q}{||| \phi_r |||_p^\alpha} ||| x |||_p^\alpha || x^(r) ||_\infty^{1- \alpha}, k, r \in N, k < r,$$ \end{document} which takes into account the number of changes in the sign of the derivatives ν(x(k)) over the period. Here, α = (r − k + 1/q)/(r + 1/p), ϕr is the Euler perfect spline of degree r, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{gathered} \left\| {\left| x \right|} \right\|_p : = {\text{sup}}_{a,b \in {\text{R}}} \{ E_0 (x)_{L_p [a,b]} :x'(t) \ne 0{\text{ }}\forall t \in (a,b)\} , \hfill \\ {\text{ }} \hfill \\ {\text{ }}E_0 (x)_{L_p [a,b]} : = {\text{ inf}}_{c \in {\text{R}}} \left\| {x - c} \right\|_{L_p [a,b]} , \hfill \\ \hfill \\ \left\| x \right\|_{L_p [a,b]} : = \left\{ {\int\limits_a^b {\left| {x(t)} \right|^p dt} } \right\}^{1/p} {\text{ for }}0 < p < \infty , \hfill \\ \end{gathered} $$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left\| x \right\|_{L_p [a,b]} : = {\text{ sup vrai}}_{t \in \left[ {a,b} \right]} \left| {x(t)} \right|$$ \end{document}. The inequality indicated turns into the equality for functions of the form x(t) = aϕr(nt + b), a, b ∈ R, n ∈ N. We also obtain an analog of this inequality in the case where k = 0 and q = ∞ and prove new exact Bernstein-type inequalities for trigonometric polynomials and splines.
引用
收藏
页码:548 / 565
页数:17
相关论文
共 40 条
  • [31] KOLMOGOROV-TYPE INEQUALITIES ON THE WHOLE LINE OR HALF LINE AND THE LAGRANGE PRINCIPLE IN THE THEORY OF EXTREMUM PROBLEMS
    Tikhomirov, V.
    Kochurov, A.
    EURASIAN MATHEMATICAL JOURNAL, 2011, 2 (03): : 125 - 142
  • [32] Inequalities of the Kolmogorov type for norms of Riesz derivatives of multivariate functions and some of their applications
    Vladislav F. Babenko
    Natal’ya V. Parfinovich
    Journal of Mathematical Sciences, 2012, 187 (1) : 9 - 21
  • [33] Kolmogorov type inequalities for norms of Riesz derivatives of multivariate functions and some applications
    Babenko, V. F.
    Parfinovich, N. V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2012, 277 : 9 - 20
  • [34] Kolmogorov type inequalities for norms of Riesz derivatives of multivariate functions and some applications
    V. F. Babenko
    N. V. Parfinovich
    Proceedings of the Steklov Institute of Mathematics, 2012, 277 : 9 - 20
  • [35] Kolmogorov type inequalities for the Marchaud fractional derivatives on the real line and the half-line
    Babenko, Vladislav F.
    Churilova, Mariya S.
    Parfinovych, Nataliia V.
    Skorokhodov, Dmytro S.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [36] Kolmogorov type inequalities for the Marchaud fractional derivatives on the real line and the half-line
    Vladislav F Babenko
    Mariya S Churilova
    Nataliia V Parfinovych
    Dmytro S Skorokhodov
    Journal of Inequalities and Applications, 2014
  • [37] ON KOLMOGOROV TYPE INEQUALITIES FOR THE NORMS OF OPERATORS OF INTERMEDIATE DERIVATIVES IN THE SPACE OF SMOOTH VECTOR FUNCTIONS ON A FINITE SEGMENT
    Aslanov, Hamidulla, I
    Eyvazly, Gunel M.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2021, 47 (01): : 143 - 155
  • [38] SMIRNOV AND BERNSTEIN-TYPE INEQUALITIES, TAKING INTO ACCOUNT HIGHER-ORDER COEFFICIENTS AND FREE TERMS OF POLYNOMIALS
    Kompaneets, E. G.
    Zybina, L. G.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2024, 13 (01): : 3 - 23
  • [39] The phenomenon of changes in the rheological properties of a viscous liquid with increasing Reynolds number, taking into account theederation Toms effect
    Pavlovsky, Valery A.
    MARINE INTELLECTUAL TECHNOLOGIES, 2024, (04): : 199 - 205
  • [40] Stability analysis of the MRAS-type estimator taking into account parameter changes of the model of the induction motor
    Niestroj, Roman
    Bialon, Tadeusz
    Pasko, Marian
    PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (03): : 301 - 305