Solution Estimates for Semilinear Non-autonomous Evolution Equations with Differentiable Linear Parts

被引:0
|
作者
Michael Gil’
机构
[1] Ben Gurion University of the Negev,Department of Mathematics
关键词
Semi-linear differential equation; Non-autonomous equation; Hilbert space; Absolute stability; -stability; Quasi-linear equation; 34G20; 37L15; 35K58; 35K59;
D O I
暂无
中图分类号
学科分类号
摘要
In a Hilbert space we consider the equation du(t)/dt=A(t)u(t)+F(t,u(t))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$du(t)/dt=A(t)u(t)+F(t,u(t))$$\end{document}, where A(t) is an unbounded operator, having a bounded strong derivative, and F is a continuous mapping. We derive norm estimates for solutions of the considered equation. These estimates give us the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-stability and absolute stability conditions. To the best of our knowledge an absolute stability test for nonautonomous evolution equations has been obtained for the first time. Our main tool is the norm estimate for the derivative of a solution of the time-dependent Lyapunov equation.
引用
收藏
页码:59 / 68
页数:9
相关论文
共 50 条