¶Nonhydrostatic models with horizontal grid resolutions of around 10 km are becoming operational at several forecasting centers. At these scales it is particularly desirable that the covariances employed in variational or statistical analysis schemes be defined in a more general way than the spatially homogeneous and isotropic covariance models that have been typical in the analysis schemes adopted at larger scales. But allowing covariances to be defined in a more adaptive way leads to a much larger parameter space required to specify them. This note addresses the challenging problem of inferring, from observed meteorological data, a set of continuous parameters defining the error covariances used to analyze data in a variational assimilation scheme. The method we propose is a Bayesian extension of the “maximum-likelihood” technique, which means that prior information about the parameters is brought into play. The method uses a stochastic approximation in the computation of some of the required terms, which are difficult and costly to evaluate by other, more standard methods. One important advantage of the proposed Bayesian approach is that it makes it possible to estimate objectively a spatially dependent but smoothly varying set of parameters in a consistent manner, provided the scale over which the variations occur is sufficiently large. This ability is illustrated in the idealized tests presented here.
机构:
Aston Univ, Nonlinear & Complex Res Grp, Birmingham B4 7ET, W Midlands, EnglandAston Univ, Nonlinear & Complex Res Grp, Birmingham B4 7ET, W Midlands, England
Vrettas, Michail D.
Cornford, Dan
论文数: 0引用数: 0
h-index: 0
机构:
Aston Univ, Nonlinear & Complex Res Grp, Birmingham B4 7ET, W Midlands, EnglandAston Univ, Nonlinear & Complex Res Grp, Birmingham B4 7ET, W Midlands, England
Cornford, Dan
Opper, Manfred
论文数: 0引用数: 0
h-index: 0
机构:
Tech Univ Berlin, Artificial Intelligence Grp, D-10587 Berlin, GermanyAston Univ, Nonlinear & Complex Res Grp, Birmingham B4 7ET, W Midlands, England
机构:
Univ Calif San Diego, Dept Phys, San Diego, CA 92103 USAUniv Calif San Diego, Dept Phys, San Diego, CA 92103 USA
Kadakia, N.
Rey, D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Phys, San Diego, CA 92103 USAUniv Calif San Diego, Dept Phys, San Diego, CA 92103 USA
Rey, D.
Ye, J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Phys, San Diego, CA 92103 USAUniv Calif San Diego, Dept Phys, San Diego, CA 92103 USA
Ye, J.
Abarbanel, H. D. I.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Phys, San Diego, CA 92103 USA
Scripps Inst Oceanog, Marine Phys Lab, San Diego, CA USAUniv Calif San Diego, Dept Phys, San Diego, CA 92103 USA
机构:
Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USAUniv Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
Ye, J.
Kadakia, N.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USAUniv Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
Kadakia, N.
Rozdeba, P. J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USAUniv Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
Rozdeba, P. J.
Abarbanel, H. D. I.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
Univ Calif San Diego, Marine Phys Lab, Scripps Inst Oceanog, La Jolla, CA 92093 USAUniv Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
Abarbanel, H. D. I.
Quinn, J. C.
论文数: 0引用数: 0
h-index: 0
机构:
Intellisis Corp, San Diego, CA 92121 USAUniv Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
机构:
Yale Univ, Dept Mech Engn, New Haven, CT 06520 USA
Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO USAYale Univ, Dept Mech Engn, New Haven, CT 06520 USA
Hogan, Christopher J., Jr.
Li, Lin
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO USAYale Univ, Dept Mech Engn, New Haven, CT 06520 USA
Li, Lin
Chen, Da-ren
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO USAYale Univ, Dept Mech Engn, New Haven, CT 06520 USA
Chen, Da-ren
Biswas, Pratim
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO USAYale Univ, Dept Mech Engn, New Haven, CT 06520 USA