Symplectic structure of statistical variational data assimilation

被引:4
|
作者
Kadakia, N. [1 ]
Rey, D. [1 ]
Ye, J. [1 ]
Abarbanel, H. D. I. [1 ,2 ]
机构
[1] Univ Calif San Diego, Dept Phys, San Diego, CA 92103 USA
[2] Scripps Inst Oceanog, Marine Phys Lab, San Diego, CA USA
关键词
data assimilation; symplectic integration; Hamiltonian systems; variational principle; Laplace's method; chaos; dynamical systems; OPERATIONAL IMPLEMENTATION; INTEGRATORS; 4D-VAR; ERROR;
D O I
10.1002/qj.2962
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Data assimilation variational principles (4D-Var) exhibit a natural symplectic structure among the state variables x(t) and. x(t). We explore the implications of this structure in both Lagrangian coordinates {x(t), x(t)} andHamiltonian canonical coordinates {x(t), p(t)} through a numerical examination of the chaotic Lorenz 1996 model in ten dimensions. We find that there are a number of subtleties associated with discretization, boundary conditions, and symplecticity, suggesting differing approaches when working in the the Lagrangian versus the Hamiltonian description. We investigate these differences in detail, and accordingly develop a protocol for searching for optimal trajectories in a Hamiltonian space. We find that casting the problem into canonical coordinates can, in some situations, considerably improve the quality of predictions.
引用
收藏
页码:756 / 771
页数:16
相关论文
共 50 条
  • [1] Statistical variational data assimilation
    Benaceur, Amina
    Verfürth, Barbara
    [J]. Computer Methods in Applied Mechanics and Engineering, 2024, 432
  • [2] Improved variational methods in statistical data assimilation
    Ye, J.
    Kadakia, N.
    Rozdeba, P. J.
    Abarbanel, H. D. I.
    Quinn, J. C.
    [J]. NONLINEAR PROCESSES IN GEOPHYSICS, 2015, 22 (02) : 205 - 213
  • [3] Ensemble-variational assimilation of statistical data in large-eddy simulation
    Mons, Vincent
    Du, Yifan
    Zaki, Tamer A.
    [J]. PHYSICAL REVIEW FLUIDS, 2021, 6 (10)
  • [4] Variational Data Assimilation of Tides
    Shi, Lei
    Tang, Liujuan
    Myers, Edward
    [J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2020, 8 (01)
  • [5] Sequential variational data assimilation
    Penenko, AV
    [J]. TWELFTH JOINT INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS/ATMOSPHERIC PHYSICS, PTS 1 AND 2, 2005, 6160
  • [6] Using adjoint sensitivity as a local structure function in variational data assimilation
    Hello, G
    Bouttier, F
    [J]. NONLINEAR PROCESSES IN GEOPHYSICS, 2001, 8 (06) : 347 - 355
  • [7] Testing variational data assimilation modules
    Zlatev, Z
    Brandt, J
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING, 2006, 3743 : 395 - 402
  • [8] On error covariances in variational data assimilation
    Gejadze, I.
    Le Dimet, F.-X.
    Shutyaev, V.
    [J]. RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2007, 22 (02) : 163 - 175
  • [9] Variational data assimilation with epidemic models
    Rhodes, C. J.
    Hollingsworth, T. D.
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2009, 258 (04) : 591 - 602
  • [10] Variational assimilation of Lagrangian data in oceanography
    Nodet, M
    [J]. INVERSE PROBLEMS, 2006, 22 (01) : 245 - 263