Topological classification and enumeration of RNA structures by genus

被引:0
|
作者
J.E. Andersen
R.C. Penner
C.M. Reidys
M.S. Waterman
机构
[1] Aarhus University,Center for the Quantum Geometry of Moduli Spaces
[2] Caltech,Departments of Math and Physics
[3] University of Southern Denmark,Institute for Mathematics and Computer Science
[4] University of Southern California,Departments of Biological Sciences, Mathematics, Computer Science
来源
关键词
Boundary Component; Mapping Class Group; Neutral Network; Oriented Edge; Exponential Growth Rate;
D O I
暂无
中图分类号
学科分类号
摘要
To an RNA pseudoknot structure is naturally associated a topological surface, which has its associated genus, and structures can thus be classified by the genus. Based on earlier work of Harer–Zagier, we compute the generating function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{D}_{g,\sigma }(z)=\sum _{n}\mathbf{d}_{g,\sigma }(n)z^n$$\end{document} for the number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{d}_{g,\sigma }(n)$$\end{document} of those structures of fixed genus \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document} and minimum stack size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} nucleotides so that no two consecutive nucleotides are basepaired and show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{D}_{g,\sigma }(z)$$\end{document} is algebraic. In particular, we prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{d}_{g,2}(n)\sim k_g\,n^{3(g-\frac{1}{2})} \gamma _2^n$$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _2\approx 1.9685$$\end{document}. Thus, for stack size at least two, the genus only enters through the sub-exponential factor, and the slow growth rate compared to the number of RNA molecules implies the existence of neutral networks of distinct molecules with the same structure of any genus. Certain RNA structures called shapes are shown to be in natural one-to-one correspondence with the cells in the Penner–Strebel decomposition of Riemann’s moduli space of a surface of genus \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document} with one boundary component, thus providing a link between RNA enumerative problems and the geometry of Riemann’s moduli space.
引用
收藏
页码:1261 / 1278
页数:17
相关论文
共 50 条
  • [21] Synthesizing topological structures containing RNA
    Di Liu
    Yaming Shao
    Gang Chen
    Yuk-Ching Tse-Dinh
    Joseph A. Piccirilli
    Yossi Weizmann
    [J]. Nature Communications, 8
  • [22] Pseudoknots in RNA secondary structures: Representation, enumeration, and prevalence
    Rodland, Einar Andreas
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2006, 13 (06) : 1197 - 1213
  • [23] A topological classification of G-quadruplex structures
    Esposito, V.
    Galleone, A.
    Mayol, L.
    Oliviero, G.
    Virgilio, A.
    Randazzo, L.
    [J]. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS, 2007, 26 (8-9): : 1155 - 1159
  • [25] Classification and predictions of RNA pseudoknots based on topological invariants
    Vernizzi, Graziano
    Orland, Henri
    Zee, A.
    [J]. PHYSICAL REVIEW E, 2016, 94 (04)
  • [26] Analysis and classification of RNA tertiary structures
    Abraham, Mira
    Dror, Oranit
    Nussinov, Ruth
    Wolfson, Haim J.
    [J]. RNA, 2008, 14 (11) : 2274 - 2289
  • [27] Topological equivalence classification and enumeration of n-input linearly separable Boolean functions
    He, Qinbin
    Chen, Fangyue
    Jin, Wei
    [J]. INFORMATION SCIENCES, 2024, 658
  • [28] Enumeration of hypermaps of a given genus
    Giorgetti, Alain
    Walsh, Timothy R. S.
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2018, 15 (01) : 225 - 266
  • [29] Enumeration of simple complete topological graphs
    Kyncl, Jan
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (07) : 1676 - 1685
  • [30] Improved Enumeration of Simple Topological Graphs
    Kyncl, Jan
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 50 (03) : 727 - 770