Topological classification and enumeration of RNA structures by genus

被引:0
|
作者
J.E. Andersen
R.C. Penner
C.M. Reidys
M.S. Waterman
机构
[1] Aarhus University,Center for the Quantum Geometry of Moduli Spaces
[2] Caltech,Departments of Math and Physics
[3] University of Southern Denmark,Institute for Mathematics and Computer Science
[4] University of Southern California,Departments of Biological Sciences, Mathematics, Computer Science
来源
关键词
Boundary Component; Mapping Class Group; Neutral Network; Oriented Edge; Exponential Growth Rate;
D O I
暂无
中图分类号
学科分类号
摘要
To an RNA pseudoknot structure is naturally associated a topological surface, which has its associated genus, and structures can thus be classified by the genus. Based on earlier work of Harer–Zagier, we compute the generating function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{D}_{g,\sigma }(z)=\sum _{n}\mathbf{d}_{g,\sigma }(n)z^n$$\end{document} for the number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{d}_{g,\sigma }(n)$$\end{document} of those structures of fixed genus \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document} and minimum stack size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} nucleotides so that no two consecutive nucleotides are basepaired and show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{D}_{g,\sigma }(z)$$\end{document} is algebraic. In particular, we prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{d}_{g,2}(n)\sim k_g\,n^{3(g-\frac{1}{2})} \gamma _2^n$$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _2\approx 1.9685$$\end{document}. Thus, for stack size at least two, the genus only enters through the sub-exponential factor, and the slow growth rate compared to the number of RNA molecules implies the existence of neutral networks of distinct molecules with the same structure of any genus. Certain RNA structures called shapes are shown to be in natural one-to-one correspondence with the cells in the Penner–Strebel decomposition of Riemann’s moduli space of a surface of genus \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document} with one boundary component, thus providing a link between RNA enumerative problems and the geometry of Riemann’s moduli space.
引用
收藏
页码:1261 / 1278
页数:17
相关论文
共 50 条
  • [1] Topological classification and enumeration of RNA structures by genus
    Andersen, J. E.
    Penner, R. C.
    Reidys, C. M.
    Waterman, M. S.
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2013, 67 (05) : 1261 - 1278
  • [2] Topological classification of RNA structures
    Bon, Michael
    Vernizzi, Graziano
    Orland, Henri
    Zee, A.
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2008, 379 (04) : 900 - 911
  • [3] Classification and enumeration of topological structures of robotic mechanisms - Generation of robotic mechanisms with unconventional topological structures
    Arikawa, Keisuke
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2007, VOL 8, PTS A AND B, 2008, : 1091 - 1100
  • [4] On RNA-RNA interaction structures of fixed topological genus
    Fu, Benjamin M. M.
    Han, Hillary S. W.
    Reidys, Christian M.
    [J]. MATHEMATICAL BIOSCIENCES, 2015, 262 : 88 - 104
  • [5] Generation of RNA pseudoknot structures with topological genus filtration
    Huang, Fenix W. D.
    Nebel, Markus E.
    Reidys, Christian M.
    [J]. MATHEMATICAL BIOSCIENCES, 2013, 245 (02) : 216 - 225
  • [6] Accurate Classification of RNA Structures Using Topological Fingerprints
    Huang, Jiajie
    Li, Kejie
    Gribskov, Michael
    [J]. PLOS ONE, 2016, 11 (10):
  • [7] Topological Classification of RNA Structures via Intersection Graph
    Quadrini, Michela
    Culmone, Rosario
    Merelli, Emanuela
    [J]. THEORY AND PRACTICE OF NATURAL COMPUTING, TPNC 2017, 2017, 10687 : 203 - 215
  • [8] The Enumeration of RNA Secondary Structures
    Liu, Chunlin
    Wang, Zhenghua
    Xie, Zheng
    Li, Baodi
    [J]. PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION (ICMS2009), VOL 6, 2009, : 402 - 407
  • [9] Enumeration of RNA structures by matrix models
    Vernizzi, G
    Orland, H
    Zee, A
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (16)
  • [10] Asymptotic enumeration of RNA structures with pseudoknots
    Jin, Emma Y.
    Reidys, Christian M.
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2008, 70 (04) : 951 - 970