A doubly nonlinear evolution for the optimal Poincaré inequality

被引:0
|
作者
Ryan Hynd
Erik Lindgren
机构
[1] University of Pennsylvania,Department of Mathematics
[2] KTH,Department of Mathematics
来源
Calculus of Variations and Partial Differential Equations | 2016年 / 55卷
关键词
35K15; 39B62; 35P30; 47J10; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
We study the large time behavior of solutions of the PDE |vt|p-2vt=Δpv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|v_t|^{p-2}v_t=\Delta _p v$$\end{document}. A special property of this equation is that the Rayleigh quotient ∫Ω|Dv(x,t)|pdx/∫Ω|v(x,t)|pdx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int _{\Omega }|Dv(x,t)|^pdx /\int _{\Omega }|v(x,t)|^pdx$$\end{document} is nonincreasing in time along solutions. As t tends to infinity, this ratio converges to the optimal constant in Poincaré’s inequality. Moreover, appropriately scaled solutions converge to a function for which equality holds in this inequality. An interesting limiting equation also arises when p tends to infinity, which provides a new approach to approximating ground states of the infinity Laplacian.
引用
收藏
相关论文
共 50 条
  • [1] A doubly nonlinear evolution for the optimal Poincare inequality
    Hynd, Ryan
    Lindgren, Erik
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (04)
  • [2] Evolution hemivariational inequality problems with doubly nonlinear operators
    Peng, Zijia
    Liu, Zhenhai
    JOURNAL OF GLOBAL OPTIMIZATION, 2011, 51 (03) : 413 - 427
  • [3] Evolution hemivariational inequality problems with doubly nonlinear operators
    Zijia Peng
    Zhenhai Liu
    Journal of Global Optimization, 2011, 51 : 413 - 427
  • [4] p-Poincaré inequality versus ∞-Poincaré inequality: some counterexamples
    Estibalitz Durand-Cartagena
    Nageswari Shanmugalingam
    Alex Williams
    Mathematische Zeitschrift, 2012, 271 : 447 - 467
  • [5] Boundary hemivariational inequality problems with doubly nonlinear operators
    Peng, Zijia
    Liu, Zhenhai
    Liu, Xiaoyou
    MATHEMATISCHE ANNALEN, 2013, 356 (04) : 1339 - 1358
  • [6] Boundary hemivariational inequality problems with doubly nonlinear operators
    Zijia Peng
    Zhenhai Liu
    Xiaoyou Liu
    Mathematische Annalen, 2013, 356 : 1339 - 1358
  • [7] A variational principle for doubly nonlinear evolution
    Akagi, Goro
    Stefanelli, Ulisse
    APPLIED MATHEMATICS LETTERS, 2010, 23 (09) : 1120 - 1124
  • [8] Doubly nonlinear stochastic evolution equations
    Scarpa, Luca
    Stefanelli, Ulisse
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2020, 30 (05): : 991 - 1031
  • [9] A NONLINEAR INEQUALITY AND EVOLUTION PROBLEMS
    Ramm, A. G.
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2010, 1 (01): : 1 - 9
  • [10] A Remark on the Steklov–Poincaré Inequality
    Sh. M. Nasibov
    Mathematical Notes, 2021, 110 : 221 - 225