A variational principle for doubly nonlinear evolution

被引:21
|
作者
Akagi, Goro [1 ]
Stefanelli, Ulisse [1 ]
机构
[1] Shibaura Inst Technol, Minuma Ku, Saitama 3378570, Japan
关键词
Variational principle; Elliptic regularization; Time discretization; MINIMUM PRINCIPLES; TRAJECTORIES; EQUATIONS; SYSTEMS;
D O I
10.1016/j.aml.2010.04.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The weighted energy-dissipation principle stands as a novel variational tool for the study of dissipative evolution and has already been applied to rate-independent systems and gradient flows. We provide here an example of its application to a specific yet critical doubly nonlinear equation featuring a super-quadratic dissipation. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1120 / 1124
页数:5
相关论文
共 50 条
  • [1] Existence, comparison principle and uniqueness for doubly nonlinear anisotropic evolution equations
    Vestberg, Matias
    JOURNAL OF EVOLUTION EQUATIONS, 2025, 25 (01)
  • [2] A variational approach to doubly nonlinear equations
    Boegelein, Verena
    Duzaar, Frank
    Marceilini, Paolo
    Scheven, Christoph
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2018, 29 (04) : 739 - 772
  • [3] VARIATIONAL PRINCIPLE FOR NONLINEAR SYSTEMS
    LEWINS, J
    NUCLEAR SCIENCE AND ENGINEERING, 1962, 12 (01) : 10 - &
  • [4] Existence of variational solutions to doubly nonlinear nonlocal evolution equations via minimizing movements
    Ghosh, Suchandan
    Kumar, Dharmendra
    Prasad, Harsh
    Tewary, Vivek
    JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (03)
  • [5] SECOND ORDER DOUBLY NONLINEAR EVOLUTION INCLUSIONS -QUASI-VARIATIONAL APPROACH-
    Kenmochi, Nobuyuki
    Shirakawa, Ken
    Yamazaki, Noriaki
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (01): : 304 - 325
  • [6] Existence of variational solutions to doubly nonlinear nonlocal evolution equations via minimizing movements
    Suchandan Ghosh
    Dharmendra Kumar
    Harsh Prasad
    Vivek Tewary
    Journal of Evolution Equations, 2022, 22
  • [7] Variational principle for some nonlinear problems
    Yi Tian
    GEM - International Journal on Geomathematics, 2022, 13
  • [8] A parametrized variational principle of nonlinear piezoelectricity
    He, Ji-Huan
    2003, Polish Academy of Sciences (10):
  • [9] NONLINEAR VARIATIONAL PRINCIPLE FOR MHD STABILITY
    CALLEBAUT, DK
    KHATER, AH
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (08): : 948 - 948
  • [10] VARIATIONAL PRINCIPLE FOR NONLINEAR STEADY FLOW
    GARROD, C
    JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 1984, 9 (02) : 97 - 106