On the nonlinearity of S-boxes and linear codes

被引:0
|
作者
Jian Liu
Sihem Mesnager
Lusheng Chen
机构
[1] Tianjin University,School of Computer Software
[2] CNRS,Department of Mathematics, CNRS
[3] University of Paris VIII,School of Mathematical Sciences
[4] University of Paris XIII,undefined
[5] Telecom ParisTech,undefined
[6] Nankai University,undefined
来源
关键词
Symmetric cryptography; Multi-output Boolean functions; S-boxes; Affine approximation attack; Nonlinearity; Linear codes; 06E30; 94A60;
D O I
暂无
中图分类号
学科分类号
摘要
For multi-output Boolean functions (also called S-boxes), various measures of nonlinearity have been widely discussed in the literature but many problems are left open in this topic. The purpose of this paper is to present a new approach to estimating the nonlinearity of S-boxes. A more fine-grained view on the notion of nonlinearity of S-boxes is presented and new connections to some linear codes are established. More precisely, we mainly study the nonlinearity indicator (denoted by 𝒩v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {N}_{\mathrm {v}}$\end{document}) for S-boxes from a coding theory point of view. Such a cryptographic parameter 𝒩v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {N}_{\mathrm {v}}$\end{document} is more related to best affine approximation attacks on stream ciphers. We establish a direct link between 𝒩v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {N}_{\mathrm {v}}$\end{document} and the minimum distance of the corresponding linear code. We exploit that connection to derive the first general lower bounds on 𝒩v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {N}_{\mathrm {v}}$\end{document} of non-affine functions from 𝔽2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{2^{n}}$\end{document} to 𝔽2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{2^{m}}$\end{document} for m dividing n. Furthermore, we show that 𝒩v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {N}_{\mathrm {v}}$\end{document} can be determined directly by the weight distribution of the corresponding linear code.
引用
收藏
页码:345 / 361
页数:16
相关论文
共 50 条
  • [21] RESISTANCE OF BALANCED S-BOXES TO LINEAR AND DIFFERENTIAL CRYPTANALYSIS
    YOUSSEF, AM
    TAVARES, SE
    INFORMATION PROCESSING LETTERS, 1995, 56 (05) : 249 - 252
  • [22] Minimizing S-Boxes in Hardware by Utilizing Linear Transformations
    Kutzner, Sebastian
    Phuong Ha Nguyen
    Poschmann, Axel
    Stoettinger, Marc
    PROGRESS IN CRYPTOLOGY - AFRICACRYPT 2014, 2014, 8469 : 235 - 250
  • [23] On MARS's s-boxes strength against linear cryptanalysis
    Castro, CJH
    Villalba, LJG
    Castro, JCH
    Cámara, JMS
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCA 2003, PT 3, PROCEEDINGS, 2003, 2669 : 79 - 83
  • [24] ON THE DESIGN OF S-BOXES
    WEBSTER, AF
    TAVARES, SE
    LECTURE NOTES IN COMPUTER SCIENCE, 1986, 218 : 523 - 534
  • [25] DEGENERATE S-BOXES
    Lisickiy, K. E.
    RADIO ELECTRONICS COMPUTER SCIENCE CONTROL, 2018, (01) : 129 - 138
  • [26] Nonlinear substitution S-boxes based on composite power residue codes
    Mazurkov M.I.
    Sokolov A.V.
    Radioelectronics and Communications Systems, 2013, 56 (9) : 448 - 455
  • [27] Nonlinearities of S-boxes
    Carlet, Claude
    Ding, Cunsheng
    FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (01) : 121 - 135
  • [28] Exponential S-Boxes: a Link Between the S-Boxes of BelT and Kuznyechik/Streebog
    Perrin, Leo
    Udovenko, Aleksei
    IACR TRANSACTIONS ON SYMMETRIC CRYPTOLOGY, 2016, 2016 (02) : 99 - 124
  • [29] Construction of Rotation Symmetric S-Boxes with High Nonlinearity and Improved DPA Resistivity
    Mazumdar, Bodhisatwa
    Mukhopadhyay, Debdeep
    IEEE TRANSACTIONS ON COMPUTERS, 2017, 66 (01) : 59 - 72
  • [30] Highly nonlinear balanced S-boxes with improved bound on unrestricted and generalized nonlinearity
    Khoongming Khoo
    Chu-Wee Lim
    Guang Gong
    Applicable Algebra in Engineering, Communication and Computing, 2008, 19 : 323 - 338