On the nonlinearity of S-boxes and linear codes

被引:0
|
作者
Jian Liu
Sihem Mesnager
Lusheng Chen
机构
[1] Tianjin University,School of Computer Software
[2] CNRS,Department of Mathematics, CNRS
[3] University of Paris VIII,School of Mathematical Sciences
[4] University of Paris XIII,undefined
[5] Telecom ParisTech,undefined
[6] Nankai University,undefined
来源
关键词
Symmetric cryptography; Multi-output Boolean functions; S-boxes; Affine approximation attack; Nonlinearity; Linear codes; 06E30; 94A60;
D O I
暂无
中图分类号
学科分类号
摘要
For multi-output Boolean functions (also called S-boxes), various measures of nonlinearity have been widely discussed in the literature but many problems are left open in this topic. The purpose of this paper is to present a new approach to estimating the nonlinearity of S-boxes. A more fine-grained view on the notion of nonlinearity of S-boxes is presented and new connections to some linear codes are established. More precisely, we mainly study the nonlinearity indicator (denoted by 𝒩v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {N}_{\mathrm {v}}$\end{document}) for S-boxes from a coding theory point of view. Such a cryptographic parameter 𝒩v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {N}_{\mathrm {v}}$\end{document} is more related to best affine approximation attacks on stream ciphers. We establish a direct link between 𝒩v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {N}_{\mathrm {v}}$\end{document} and the minimum distance of the corresponding linear code. We exploit that connection to derive the first general lower bounds on 𝒩v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {N}_{\mathrm {v}}$\end{document} of non-affine functions from 𝔽2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{2^{n}}$\end{document} to 𝔽2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{2^{m}}$\end{document} for m dividing n. Furthermore, we show that 𝒩v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {N}_{\mathrm {v}}$\end{document} can be determined directly by the weight distribution of the corresponding linear code.
引用
收藏
页码:345 / 361
页数:16
相关论文
共 50 条
  • [1] On the nonlinearity of S-boxes and linear codes
    Liu, Jian
    Mesnager, Sihem
    Chen, Lusheng
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2017, 9 (03): : 345 - 361
  • [2] On Nonlinearity of S-Boxes and Their Related Binary Codes
    Liu Jian
    Chen Lusheng
    CHINESE JOURNAL OF ELECTRONICS, 2016, 25 (01) : 167 - 173
  • [3] On Nonlinearity of S-Boxes and Their Related Binary Codes
    LIU Jian
    CHEN Lusheng
    Chinese Journal of Electronics, 2016, 25 (01) : 167 - 173
  • [4] Constructions of Resilient S-Boxes With Strictly Almost Optimal Nonlinearity Through Disjoint Linear Codes
    Zhang, Wei-Guo
    Pasalic, Enes
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (03) : 1638 - 1651
  • [5] GENERALIZED NONLINEARITY OF S-BOXES
    Gangopadhyay, Sugata
    Paul, Goutam
    Sinha, Nishant
    Stanica, Pantelimon
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2018, 12 (01) : 115 - 122
  • [6] S-boxes with controllable nonlinearity
    Cheon, JH
    Chee, S
    Park, C
    ADVANCES IN CRYPTOLOGY - EUROCRYPT'99, 1999, 1592 : 286 - 294
  • [7] On algebraic properties of S-boxes designed by means of disjoint linear codes
    Wei, Yongzhuang
    Yin, Wenbin
    Pasalic, Enes
    Zhang, Fengrong
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (01) : 55 - 66
  • [8] Linear redundancy in S-boxes
    Fuller, J
    Millan, W
    FAST SOFTWARE ENCRYPTION, 2003, 2887 : 74 - 86
  • [9] Novel method for increasing the nonlinearity of S-Boxes
    Gao S.
    Ma W.-P.
    Guo N.
    Yan Y.-J.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2010, 37 (06): : 1017 - 1021
  • [10] New construction of highly nonlinear resilient S-boxes via linear codes
    Haixia ZHAO
    Yongzhuang WEI
    Frontiers of Computer Science, 2022, 16 (03) : 175 - 181