Decoding the protein–ligand interactions using parallel graph neural networks

被引:0
|
作者
Carter Knutson
Mridula Bontha
Jenna A. Bilbrey
Neeraj Kumar
机构
[1] Pacific Northwest National Laboratory,
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Protein–ligand interactions (PLIs) are essential for biochemical functionality and their identification is crucial for estimating biophysical properties for rational therapeutic design. Currently, experimental characterization of these properties is the most accurate method, however, this is very time-consuming and labor-intensive. A number of computational methods have been developed in this context but most of the existing PLI prediction heavily depends on 2D protein sequence data. Here, we present a novel parallel graph neural network (GNN) to integrate knowledge representation and reasoning for PLI prediction to perform deep learning guided by expert knowledge and informed by 3D structural data. We develop two distinct GNN architectures: GNNF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GNN}_{\mathrm{F}}$$\end{document} is the base implementation that employs distinct featurization to enhance domain-awareness, while GNNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GNN}_{\mathrm{P}}$$\end{document} is a novel implementation that can predict with no prior knowledge of the intermolecular interactions. The comprehensive evaluation demonstrated that GNN can successfully capture the binary interactions between ligand and protein’s 3D structure with 0.979 test accuracy for GNNF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GNN}_{\mathrm{F}}$$\end{document} and 0.958 for GNNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GNN}_{\mathrm{P}}$$\end{document} for predicting activity of a protein–ligand complex. These models are further adapted for regression tasks to predict experimental binding affinities and pIC50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {pIC}_{\mathrm{50}}$$\end{document} crucial for compound’s potency and efficacy. We achieve a Pearson correlation coefficient of 0.66 and 0.65 on experimental affinity and 0.50 and 0.51 on pIC50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {pIC}_{\mathrm{50}}$$\end{document} with GNNF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GNN}_{\mathrm{F}}$$\end{document} and GNNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GNN}_{\mathrm{P}}$$\end{document}, respectively, outperforming similar 2D sequence based models. Our method can serve as an interpretable and explainable artificial intelligence (AI) tool for predicted activity, potency, and biophysical properties of lead candidates. To this end, we show the utility of GNNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GNN}_{\mathrm{P}}$$\end{document} on SARS-Cov-2 protein targets by screening a large compound library and comparing the prediction with the experimentally measured data.
引用
下载
收藏
相关论文
共 50 条
  • [1] Decoding the protein-ligand interactions using parallel graph neural networks
    Knutson, Carter
    Bontha, Mridula
    Bilbrey, Jenna A.
    Kumar, Neeraj
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] Accurate prediction of protein–ligand interactions by combining physical energy functions and graph-neural networks
    Yiyu Hong
    Junsu Ha
    Jaemin Sim
    Chae Jo Lim
    Kwang-Seok Oh
    Ramakrishnan Chandrasekaran
    Bomin Kim
    Jieun Choi
    Junsu Ko
    Woong-Hee Shin
    Juyong Lee
    Journal of Cheminformatics, 16 (1)
  • [3] Learning characteristics of graph neural networks predicting protein–ligand affinities
    Andrea Mastropietro
    Giuseppe Pasculli
    Jürgen Bajorath
    Nature Machine Intelligence, 2023, 5 : 1427 - 1436
  • [4] Prediction of protein–protein interaction using graph neural networks
    Kanchan Jha
    Sriparna Saha
    Hiteshi Singh
    Scientific Reports, 12
  • [5] Motor Imagery Decoding in the Presence of Distraction Using Graph Sequence Neural Networks
    Cai, Shengyuan
    Li, Haoran
    Wu, Qiang
    Liu, Ju
    Zhang, Yu
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2022, 30 : 1716 - 1726
  • [6] Learning characteristics of graph neural networks predicting protein-ligand affinities
    Mastropietro, Andrea
    Pasculli, Giuseppe
    Bajorath, Juergen
    NATURE MACHINE INTELLIGENCE, 2023, 5 (12) : 1427 - 1436
  • [7] PARALLEL ANALOG IMAGE-CODING AND DECODING BY USING CELLULAR NEURAL NETWORKS
    TANAKA, M
    CROUNSE, KR
    ROSKA, T
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1994, E77A (08) : 1387 - 1395
  • [8] Execution Plan Selection for Parallel Queries Using Graph Neural Networks
    Tao, Wenxia
    Niu, Baoning
    Liu, Haonan
    Computer Engineering and Applications, 2023, 59 (13) : 259 - 265
  • [9] Prediction of protein-protein interaction using graph neural networks
    Jha, Kanchan
    Saha, Sriparna
    Singh, Hiteshi
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [10] Predicting lncRNA-protein interactions with bipartite graph embedding and deep graph neural networks
    Ma, Yuzhou
    Zhang, Han
    Jin, Chen
    Kang, Chuanze
    FRONTIERS IN GENETICS, 2023, 14