Partial melting of secondary pyroxenite at 1 and 1.5 GPa, and its role in upwelling heterogeneous mantle

被引:0
|
作者
G. Borghini
P. Fumagalli
E. Rampone
机构
[1] Università degli Studi di Milano,Dipartimento di Scienze della Terra “Ardito Desio”
[2] DISTAV,undefined
[3] Università di Genova,undefined
关键词
Pyroxenites; Experimental petrology; Partial melting; Basalt composition; Mantle heterogeneity; Melt productivity;
D O I
暂无
中图分类号
学科分类号
摘要
We performed partial melting experiments at 1 and 1.5 GPa, and 1180–1400 °C, to investigate the melting under mantle conditions of an olivine-websterite (GV10), which represents a natural proxy of secondary (or stage 2) pyroxenite. Its subsolidus mineralogy consists of clinopyroxene, orthopyroxene, olivine and spinel (+garnet at 1.5 GPa). Solidus temperature is located between 1180 and 1200 °C at 1 GPa, and between 1230 and 1250 °C at 1.5 GPa. Orthopyroxene (±garnet), spinel and clinopyroxene are progressively consumed by melting reactions to produce olivine and melt. High coefficient of orthopyroxene in the melting reaction results in relatively high SiO2 content of low melt fractions. After orthopyroxene exhaustion, melt composition is controlled by the composition of coexisting clinopyroxene. At increasing melt fraction, CaO content of melt increases, whereas Na2O, Al2O3 and TiO2 behave as incompatible elements. Low Na2O contents reflect high partition coefficient of Na between clinopyroxene and melt (DNa2Ocpx/liquid\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{{{\text{Na}}_{ 2} {\text{O}}}}^{{{\text{cpx}}/{\text{liquid}}}}$$\end{document}). Melting of GV10 produces Quartz- to Hyperstene-normative basaltic melts that differ from peridotitic melts only in terms of lower Na2O and higher CaO contents. We model the partial melting of mantle sources made of different mixing of secondary pyroxenite and fertile lherzolite in the context of adiabatic oceanic mantle upwelling. At low potential temperatures (TP < 1310 °C), low-degree melt fractions from secondary pyroxenite react with surrounding peridotite producing orthopyroxene-rich reaction zones (or refertilized peridotite) and refractory clinopyroxene-rich residues. At higher TP (1310–1430 °C), simultaneous melting of pyroxenite and peridotite produces mixed melts with major element compositions matching those of primitive MORBs. This reinforces the notion that secondary pyroxenite may be potential hidden components in MORB mantle source.
引用
收藏
相关论文
共 50 条
  • [31] MELTING OF A DRY PERIDOTITE KLB-1 UP TO 14 GPA - IMPLICATIONS ON THE ORIGIN OF PERIDOTITIC UPPER MANTLE
    TAKAHASHI, E
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1986, 91 (B9): : 9367 - 9382
  • [32] H2O storage capacity of olivine at 5-8 GPa and consequences for dehydration partial melting of the upper mantle
    Ardia, P.
    Hirschmann, M. M.
    Withers, A. C.
    Tenner, T. J.
    EARTH AND PLANETARY SCIENCE LETTERS, 2012, 345 : 104 - 116
  • [33] THE OCEAN-CONTINENT TRANSITION IN THE UNIFORM LITHOSPHERIC STRETCHING MODEL - ROLE OF PARTIAL MELTING IN THE MANTLE
    FOUCHER, JP
    LEPICHON, X
    SIBUET, JC
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 305 (1489): : 27 - 43
  • [34] MORB melting processes beneath the southern Mid-Atlantic Ridge (40–55°S): a role for mantle plume-derived pyroxenite
    P. le Roux
    A. le Roex
    J.-G. Schilling
    Contributions to Mineralogy and Petrology, 2002, 144 : 206 - 229
  • [35] The system Na2CO3-CaCO3-MgCO3 at 6 GPa and 900-1250°C and its relation to the partial melting of carbonated mantle
    Shatskiy, Anton
    Litasov, Konstantin D.
    Sharygin, Igor S.
    Egonin, Ilya A.
    Mironov, Aleksandr M.
    Palyanov, Yuri N.
    Ohtani, Eiji
    HIGH PRESSURE RESEARCH, 2016, 36 (01) : 23 - 41
  • [36] Ultrasonic Acoustic Velocities During Partial Melting of a Mantle Peridotite KLB-1
    Weidner, Donald J.
    Li, Li
    Whitaker, Matthew L.
    Triplett, Richard
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2018, 123 (02) : 1252 - 1261
  • [37] MORB melting processes beneath the southern Mid-Atlantic Ridge (40-55°S):: a role for mantle plume-derived pyroxenite
    le Roux, PJ
    le Roex, AP
    Schilling, JG
    CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 2002, 144 (02) : 206 - 229
  • [38] Hydrogen partitioning between nominally anhydrous upper mantle minerals and melt between 3 and 5 GPa and applications to hydrous peridotite partial melting
    Tenner, Travis J.
    Hirschmann, Marc M.
    Withers, Anthony C.
    Hervig, Richard L.
    CHEMICAL GEOLOGY, 2009, 262 (1-2) : 42 - 56
  • [39] The composition of near-solidus partial melts of fertile peridotite at 1 and 1.5 GPa: Implications for the petrogenesis of MORB
    Falloon, Trevor J.
    Green, David H.
    Danyushevsky, Leonid V.
    McNeill, Andrew W.
    JOURNAL OF PETROLOGY, 2008, 49 (04) : 591 - 613
  • [40] Partial melting in the mantle wedge -: the role of H2O in the genesis of mantle-derived 'arc-related' magmas
    Ulmer, P
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2001, 127 (1-4) : 215 - 232