Stable embedded minimal surfaces bounded by a straight line

被引:0
|
作者
Joaquín Pérez
机构
[1] University of Granada,Department of Geometry and Topology
关键词
Primary: 53A10; Secondary: 49Q05; Secondary: 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M\subset \mathbb{R}^3}$$\end{document} is a properly embedded oriented stable minimal surface whose boundary is a straight line and the area of M in extrinsic balls grows quadratically in the radius, then M is a half-plane or half of the classical Enneper minimal surface. This solves a conjecture posed by B. White in Geometric Analysis and the Calculus of Variations for Stefan Hildebrandt, International Press, Somerville, 1996.
引用
收藏
页码:267 / 279
页数:12
相关论文
共 50 条