We prove that if \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${M\subset \mathbb{R}^3}$$\end{document} is a properly embedded oriented stable minimal surface whose boundary is a straight line and the area of M in extrinsic balls grows quadratically in the radius, then M is a half-plane or half of the classical Enneper minimal surface. This solves a conjecture posed by B. White in Geometric Analysis and the Calculus of Variations for Stefan Hildebrandt, International Press, Somerville, 1996.