On the range of options prices

被引:25
|
作者
Ernst Eberlein
Jean Jacod
机构
[1] Institut für Mathematische Stochastik,
[2] Universität Freiburg,undefined
[3] Eckerstrasse 1,undefined
[4] D-79104 Freiburg,undefined
[5] Germany,undefined
[6] Laboratoire de Probabilités (CNRS URA 224),undefined
[7] Université Pierre et Marie Curie,undefined
[8] Tour 56,undefined
[9] 4 Place Jussieu,undefined
[10] F-75 252 Paris Cedex,undefined
[11] France,undefined
关键词
Key words:Contingent claim valuation, incomplete model, purely discontinuous process, martingale measures ¶JEL classification:G13 ¶Mathematics Subject Classification (1991):90A09, 60H30, 60J75, 62P20;
D O I
10.1007/s007800050019
中图分类号
学科分类号
摘要
In this paper we consider the valuation of an option with time to expiration \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $T$\end{document} and pay-off function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $g$\end{document} which is a convex function (as is a European call option), and constant interest rate \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $r$\end{document}, in the case where the underlying model for stock prices \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $(S_t)$\end{document} is a purely discontinuous process (hence typically the model is incomplete). The main result is that, for “most” such models, the range of the values of the option, using all possible equivalent martingale measures for the valuation, is the interval \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $(e^{-rT}g(e^{rT}S_0),S_0)$\end{document}, this interval being the biggest interval in which the values must lie, whatever model is used.
引用
收藏
页码:131 / 140
页数:9
相关论文
共 50 条