On the range of options prices

被引:25
|
作者
Ernst Eberlein
Jean Jacod
机构
[1] Institut für Mathematische Stochastik,
[2] Universität Freiburg,undefined
[3] Eckerstrasse 1,undefined
[4] D-79104 Freiburg,undefined
[5] Germany,undefined
[6] Laboratoire de Probabilités (CNRS URA 224),undefined
[7] Université Pierre et Marie Curie,undefined
[8] Tour 56,undefined
[9] 4 Place Jussieu,undefined
[10] F-75 252 Paris Cedex,undefined
[11] France,undefined
关键词
Key words:Contingent claim valuation, incomplete model, purely discontinuous process, martingale measures ¶JEL classification:G13 ¶Mathematics Subject Classification (1991):90A09, 60H30, 60J75, 62P20;
D O I
10.1007/s007800050019
中图分类号
学科分类号
摘要
In this paper we consider the valuation of an option with time to expiration \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $T$\end{document} and pay-off function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $g$\end{document} which is a convex function (as is a European call option), and constant interest rate \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $r$\end{document}, in the case where the underlying model for stock prices \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $(S_t)$\end{document} is a purely discontinuous process (hence typically the model is incomplete). The main result is that, for “most” such models, the range of the values of the option, using all possible equivalent martingale measures for the valuation, is the interval \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $(e^{-rT}g(e^{rT}S_0),S_0)$\end{document}, this interval being the biggest interval in which the values must lie, whatever model is used.
引用
收藏
页码:131 / 140
页数:9
相关论文
共 50 条
  • [1] DO AGRICULTURAL OPTIONS PRICES DIFFER FROM NONAGRICULTURAL OPTIONS PRICES
    GORDON, JD
    AMERICAN JOURNAL OF AGRICULTURAL ECONOMICS, 1987, 69 (05) : 1085 - 1086
  • [2] The Paradoxical Prices of Options
    Marcato, Gianluca
    Sebehela, Tumellano
    REVIEW OF PACIFIC BASIN FINANCIAL MARKETS AND POLICIES, 2022, 25 (02)
  • [3] Regulated prices and real options
    Guthrie, Graeme
    TELECOMMUNICATIONS POLICY, 2012, 36 (08) : 650 - 663
  • [4] OPTIONS WITH STOCHASTIC STRIKE PRICES
    Szaz, Janos
    Vidovics-Dancs, Agnes
    32ND EUROPEAN CONFERENCE ON MODELLING AND SIMULATION (ECMS 2018), 2018, : 41 - 45
  • [5] THE RANGE OF OPTIONS
    ZIMMERMAN, MJ
    AMERICAN PHILOSOPHICAL QUARTERLY, 1990, 27 (04) : 345 - 355
  • [6] On the asymptotic behavior of the prices of Asian options
    Hishida, Yuji
    Yasutomi, Kenji
    ASIA-PACIFIC FINANCIAL MARKETS, 2005, 12 (04) : 289 - 306
  • [7] The economics of time as it is embedded in the prices of options
    Madan, Dilip B.
    Wang, King
    QUANTITATIVE FINANCE, 2023, 23 (04) : 579 - 593
  • [8] Prices and sensitivities of Asian options: A survey
    Boyle, Phelim
    Potapchik, Alexander
    INSURANCE MATHEMATICS & ECONOMICS, 2008, 42 (01): : 189 - 211
  • [9] Modeling the bid and ask prices of options
    Madan, Dilip B.
    Schoutens, Wim
    Wang, King
    JOURNAL OF COMPUTATIONAL FINANCE, 2023, 26 (04) : 1 - 36
  • [10] Executive options with inflated equity prices
    Wilson, Linus
    Wu, Yan Wendy
    INTERNATIONAL JOURNAL OF MANAGERIAL FINANCE, 2014, 10 (03) : 266 - +