A numerical investigation of Caputo time fractional Allen–Cahn equation using redefined cubic B-spline functions

被引:0
|
作者
Nauman Khalid
Muhammad Abbas
Muhammad Kashif Iqbal
Dumitru Baleanu
机构
[1] National College of Business Administration & Economics,Department of Mathematics
[2] Ton Duc Thang University,Informetrics Research Group
[3] Ton Duc Thang University,Faculty of Mathematics and Statistics
[4] University of Sargodha,Department of Mathematics
[5] Government College University,Department of Mathematics
[6] Cankaya University,Department of Mathematics, Faculty of Arts and Sciences
[7] China Medical University,Department of Medical Research, China Medical University Hospital
[8] Institute of Space Sciences,undefined
关键词
Redefined cubic B-spline functions; Time fractional Allen–Cahn equation; Caputo’s time fractional derivative; Stability and convergence; Finite difference formulation;
D O I
暂无
中图分类号
学科分类号
摘要
We present a collocation approach based on redefined cubic B-spline (RCBS) functions and finite difference formulation to study the approximate solution of time fractional Allen–Cahn equation (ACE). We discretize the time fractional derivative of order α∈(0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha\in(0,1]$\end{document} by using finite forward difference formula and bring RCBS functions into action for spatial discretization. We find that the numerical scheme is of order O(h2+Δt2−α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(h^{2}+\Delta t^{2-\alpha})$\end{document} and unconditionally stable. We test the computational efficiency of the proposed method through some numerical examples subject to homogeneous/nonhomogeneous boundary constraints. The simulation results show a superior agreement with the exact solution as compared to those found in the literature.
引用
收藏
相关论文
共 50 条
  • [21] A hybrid B-spline collocation technique for the Caputo time fractional nonlinear Burgers’ equation
    Mohammad Tamsir
    Deependra Nigam
    Neeraj Dhiman
    Anand Chauhan
    [J]. Beni-Suef University Journal of Basic and Applied Sciences, 12
  • [22] A hybrid B-spline collocation technique for the Caputo time fractional nonlinear Burgers' equation
    Tamsir, Mohammad
    Nigam, Deependra
    Dhiman, Neeraj
    Chauhan, Anand
    [J]. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES, 2023, 12 (01)
  • [23] Numerical Solution of Fokker-Planck Equation Using the Cubic B-Spline Scaling Functions
    Lakestani, Mehrdad
    Dehghan, Mehdi
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (02) : 418 - 429
  • [24] Numerical Solution of Volterra Functional Integral Equation by Using Cubic B-Spline Scaling Functions
    Maleknejad, Khosrow
    Mollapourasl, Reza
    Mirzaei, Paria
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (02) : 699 - 722
  • [25] Numerical Solutions of Third-Order Time-Fractional Differential Equations Using Cubic B-Spline Functions
    Abbas, Muhammad
    Bibi, Afreen
    Alzaidi, Ahmed S. M.
    Nazir, Tahir
    Majeed, Abdul
    Akram, Ghazala
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (09)
  • [26] MEMORY EFFECT ANALYSIS USING PIECEWISE CUBIC B-SPLINE OF TIME FRACTIONAL DIFFUSION EQUATION
    Shafiq, Madiha
    Abdullah, Farah Aini
    Abbas, Muhammad
    Alzaidi, Ahmed Sm
    Riaz, Muhammad Bilal
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (08)
  • [27] Numerical Solutions of the KdV Equation Using B-Spline Functions
    Mehrdad Lakestani
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2017, 41 : 409 - 417
  • [28] Numerical method using cubic B-spline for the heat and wave equation
    Goh, Joan
    Abd Majid, Ahmad
    Ismail, Ahmad Izani Md
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (12) : 4492 - 4498
  • [29] An efficient numerical method based on redefined cubic B-spline basis functions for pricing Asian options
    Roul, Pradip
    Goura, V. M. K. Prasad
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 401
  • [30] Numerical Solutions of the KdV Equation Using B-Spline Functions
    Lakestani, Mehrdad
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A2): : 409 - 417