A numerical investigation of Caputo time fractional Allen–Cahn equation using redefined cubic B-spline functions

被引:0
|
作者
Nauman Khalid
Muhammad Abbas
Muhammad Kashif Iqbal
Dumitru Baleanu
机构
[1] National College of Business Administration & Economics,Department of Mathematics
[2] Ton Duc Thang University,Informetrics Research Group
[3] Ton Duc Thang University,Faculty of Mathematics and Statistics
[4] University of Sargodha,Department of Mathematics
[5] Government College University,Department of Mathematics
[6] Cankaya University,Department of Mathematics, Faculty of Arts and Sciences
[7] China Medical University,Department of Medical Research, China Medical University Hospital
[8] Institute of Space Sciences,undefined
关键词
Redefined cubic B-spline functions; Time fractional Allen–Cahn equation; Caputo’s time fractional derivative; Stability and convergence; Finite difference formulation;
D O I
暂无
中图分类号
学科分类号
摘要
We present a collocation approach based on redefined cubic B-spline (RCBS) functions and finite difference formulation to study the approximate solution of time fractional Allen–Cahn equation (ACE). We discretize the time fractional derivative of order α∈(0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha\in(0,1]$\end{document} by using finite forward difference formula and bring RCBS functions into action for spatial discretization. We find that the numerical scheme is of order O(h2+Δt2−α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(h^{2}+\Delta t^{2-\alpha})$\end{document} and unconditionally stable. We test the computational efficiency of the proposed method through some numerical examples subject to homogeneous/nonhomogeneous boundary constraints. The simulation results show a superior agreement with the exact solution as compared to those found in the literature.
引用
收藏
相关论文
共 50 条
  • [1] A numerical investigation of Caputo time fractional Allen-Cahn equation using redefined cubic B-spline functions
    Khalid, Nauman
    Abbas, Muhammad
    Iqbal, Muhammad Kashif
    Baleanu, Dumitru
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [2] Redefined Extended Cubic B-Spline Functions for Numerical Solution of Time-Fractional Telegraph Equation
    Amin, Muhammad
    Abbas, Muhammad
    Baleanu, Dumitru
    Iqbal, Muhammad Kashif
    Riaz, Muhammad Bilal
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 127 (01): : 361 - 384
  • [3] Approximation of Caputo time-fractional diffusion equation using redefined cubic exponential B-spline collocation technique
    Tamsir, Mohammad
    Dhiman, Neeraj
    Nigam, Deependra
    Chauhan, Anand
    [J]. AIMS MATHEMATICS, 2021, 6 (04): : 3805 - 3820
  • [4] Numerical Treatment of Time-Fractional Klein-Gordon Equation Using Redefined Extended Cubic B-Spline Functions
    Amin, Muhammad
    Abbas, Muhammad
    Iqbal, Muhammad Kashif
    Baleanu, Dumitru
    [J]. FRONTIERS IN PHYSICS, 2020, 8
  • [5] Numerical Simulation of Time Fractional BBM-Burger Equation Using Cubic B-Spline Functions
    Kamran, Mohsin
    Abbas, Muhammad
    Majeed, Abdul
    Emadifar, Homan
    Nazir, Tahir
    [J]. JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [6] Extension of Cubic B-Spline for Solving the Time-Fractional Allen-Cahn Equation in the Context of Mathematical Physics
    Fatima, Mubeen
    Agarwal, Ravi P.
    Abbas, Muhammad
    Mohammed, Pshtiwan Othman
    Shafiq, Madiha
    Chorfi, Nejmeddine
    [J]. COMPUTATION, 2024, 12 (03)
  • [7] Numerical approximation of inhomogeneous time fractional Burgers–Huxley equation with B-spline functions and Caputo derivative
    Abdul Majeed
    Mohsin Kamran
    Noreen Asghar
    Dumitru Baleanu
    [J]. Engineering with Computers, 2022, 38 : 885 - 900
  • [8] Numerical approximation of inhomogeneous time fractional Burgers-Huxley equation with B-spline functions and Caputo derivative
    Majeed, Abdul
    Kamran, Mohsin
    Asghar, Noreen
    Baleanu, Dumitru
    [J]. ENGINEERING WITH COMPUTERS, 2022, 38 (SUPPL 2) : 885 - 900
  • [9] A numerical study on time fractional Fisher equation using an extended cubic B-spline approximation
    Akram, Tayyaba
    Abbas, Muhammad
    Ali, Ajmal
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2021, 22 (01): : 85 - 96
  • [10] Application of trigonometric B-spline functions for solving Caputo time fractional gas dynamics equation
    Noureen, Rabia
    Naeem, Muhammad Nawaz
    Baleanu, Dumitru
    Mohammed, Pshtiwan Othman
    Almusawa, Musawa Yahya
    [J]. AIMS MATHEMATICS, 2023, 8 (11): : 25343 - 25370