Study of the heavily p-type doping of cubic GaN with Mg

被引:0
|
作者
C. A. Hernández-Gutiérrez
Y. L. Casallas-Moreno
Victor-Tapio Rangel-Kuoppa
Dagoberto Cardona
Yaoqiao Hu
Yuri Kudriatsev
M. A. Zambrano-Serrano
S. Gallardo-Hernandez
M. Lopez-Lopez
机构
[1] Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez,Centro de Investigación en Dispositivos Semiconductores, Instituto de Ciencias
[2] Posgrado en Ingeniería Grupo de Opto-mecatrónica,Facultad de Ciencias Físico
[3] CONACYT,Matemáticas
[4] Instituto Politécnico Nacional - UPIITA,Department of Materials Science and Engineering
[5] Universidad Autónoma de Puebla,Departamento de Ingeniería Eléctrica SEES
[6] UMSNH,Programa de Doctorado en Nanociencias Y Nanotecnología
[7] The University of Texas At Dallas,Departamento de Física
[8] Cinvestav-IPN,undefined
[9] Cinvestav-IPN,undefined
[10] Cinvestav-IPN,undefined
来源
Scientific Reports | / 10卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We have studied the Mg doping of cubic GaN grown by plasma-assisted Molecular Beam Epitaxy (PA-MBE) over GaAs (001) substrates. In particular, we concentrated on conditions to obtain heavy p-type doping to achieve low resistance films which can be used in bipolar devices. We simulated the Mg-doped GaN transport properties by density functional theory (DFT) to compare with the experimental data. Mg-doped GaN cubic epitaxial layers grown under optimized conditions show a free hole carrier concentration with a maximum value of 6 × 1019 cm−3 and mobility of 3 cm2/Vs. Deep level transient spectroscopy shows the presence of a trap with an activation energy of 114 meV presumably associated with nitrogen vacancies, which could be the cause for the observed self-compensation behavior in heavily Mg-doped GaN involving Mg-VN complexes. Furthermore, valence band analysis by X-ray photoelectron spectroscopy and photoluminescence spectroscopy revealed an Mg ionization energy of about 100 meV, which agrees quite well with the value of 99.6 meV obtained by DFT. Our results show that the cubic phase is a suitable alternative to generate a high free hole carrier concentration for GaN.
引用
收藏
相关论文
共 50 条
  • [41] High-temperature annealing behavior of p-type doping characteristics in Mg-doped GaN
    Nakano, Y
    Fujishima, O
    Kachi, T
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (09) : G574 - G577
  • [42] Gradient doping of Mg in p-type GaN for high efficiency InGaN-GaN ultraviolet light-emitting diode
    Kwon, Min-Ki
    Park, Il-Kyu
    Kim, Ja-Yeon
    Kim, Jeom-Oh
    Kim, Bongjin
    Park, Seong-Ju
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2007, 19 (21-24) : 1880 - 1882
  • [43] Activation of acceptors in Mg-doped, p-type GaN
    Gotz, W
    Johnson, NM
    Walker, J
    Bour, DP
    III-NITRIDE, SIC AND DIAMOND MATERIALS FOR ELECTRONIC DEVICES, 1996, 423 : 595 - 600
  • [44] p-type doping of Zn(Mg)BeSe epitaxial layers
    Tournié, E
    Faurie, JP
    APPLIED PHYSICS LETTERS, 1999, 75 (03) : 382 - 384
  • [45] Microstructural contributions to hole transport in p-type GaN:Mg
    Rice, AK
    Malloy, KJ
    JOURNAL OF APPLIED PHYSICS, 2001, 89 (05) : 2816 - 2825
  • [46] Electrical properties of p-type GaN:Mg codoped with oxygen
    Korotkov, RY
    Gregie, JM
    Wessels, BW
    APPLIED PHYSICS LETTERS, 2001, 78 (02) : 222 - 224
  • [47] Formation of VNH and MgVNH in p-type GaN(Mg,H)
    Wright, AF
    Myers, SM
    Sanati, M
    Estreicher, SK
    PHYSICA B-CONDENSED MATTER, 2006, 376 : 477 - 481
  • [48] Heavily doped p-type ZnSe layer formation by excimer laser doping
    Hatanaka, Y
    Aoki, T
    Arakawa, T
    Noda, D
    Nakanishi, Y
    JOURNAL OF CRYSTAL GROWTH, 1998, 184 : 425 - 428
  • [49] Optical Properties of Mg Doped p-type GaN Nanowires
    Patsha, Avinash
    Pandian, Ramanathaswamy
    Dhara, S.
    Tyagi, A. K.
    PROCEEDINGS OF THE 59TH DAE SOLID STATE PHYSICS SYMPOSIUM 2014 (SOLID STATE PHYSICS), 2015, 1665
  • [50] Comparative study of p-type dopants, Mg and Be in GaN grown by RF-MBE
    Sugita, S
    Watari, Y
    Yoshizawa, G
    Sodesawa, J
    Yamamizu, H
    Liu, KT
    Su, YK
    Horikoshi, Y
    COMPOUND SEMICONDUCTORS 2002, 2003, 174 : 29 - 32