An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data

被引:0
|
作者
Mark Carty
Lee Zamparo
Merve Sahin
Alvaro González
Raphael Pelossof
Olivier Elemento
Christina S. Leslie
机构
[1] Computational Biology Program,
[2] Memorial Sloan Kettering Cancer Center,undefined
[3] Institute for Computational Biomedicine,undefined
[4] Weill Cornell Medical College,undefined
[5] Tri-Institutional Training Program in Computational Biology and Medicine,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Here we present HiC-DC, a principled method to estimate the statistical significance (P values) of chromatin interactions from Hi-C experiments. HiC-DC uses hurdle negative binomial regression account for systematic sources of variation in Hi-C read counts—for example, distance-dependent random polymer ligation and GC content and mappability bias—and model zero inflation and overdispersion. Applied to high-resolution Hi-C data in a lymphoblastoid cell line, HiC-DC detects significant interactions at the sub-topologically associating domain level, identifying potential structural and regulatory interactions supported by CTCF binding sites, DNase accessibility, and/or active histone marks. CTCF-associated interactions are most strongly enriched in the middle genomic distance range (∼700 kb–1.5 Mb), while interactions involving actively marked DNase accessible elements are enriched both at short (<500 kb) and longer (>1.5 Mb) genomic distances. There is a striking enrichment of longer-range interactions connecting replication-dependent histone genes on chromosome 6, potentially representing the chromatin architecture at the histone locus body.
引用
收藏
相关论文
共 50 条
  • [31] Chicdiff: a computational pipeline for detecting differential chromosomal interactions in Capture Hi-C data
    Cairns, Jonathan
    Orchard, William R.
    Malysheva, Valeriya
    Spivakov, Mikhail
    [J]. BIOINFORMATICS, 2019, 35 (22) : 4764 - 4766
  • [32] High-resolution Hi-C maps highlight multiscale chromatin architecture reorganization during cold stress in Brachypodium distachyon
    Zhang, Xin
    Yu, Guangrun
    Dai, Yan
    Zhang, Hui
    Wang, Kai
    Han, Jinlei
    [J]. BMC PLANT BIOLOGY, 2023, 23 (01)
  • [33] Low input capture Hi-C (liCHi-C) identifies promoter-enhancer interactions at high-resolution
    Laureano Tomás-Daza
    Llorenç Rovirosa
    Paula López-Martí
    Andrea Nieto-Aliseda
    François Serra
    Ainoa Planas-Riverola
    Oscar Molina
    Rebecca McDonald
    Cedric Ghevaert
    Esther Cuatrecasas
    Dolors Costa
    Mireia Camós
    Clara Bueno
    Pablo Menéndez
    Alfonso Valencia
    Biola M. Javierre
    [J]. Nature Communications, 14
  • [34] Extracting multi-way chromatin contacts from Hi-C data
    Liu, Lei
    Zhang, Bokai
    Hyeon, Changbong
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (12)
  • [35] Fine mapping chromatin contacts in capture Hi-C data
    Christiaan Q Eijsbouts
    Oliver S Burren
    Paul J Newcombe
    Chris Wallace
    [J]. BMC Genomics, 20
  • [36] DeepLoop robustly maps chromatin interactions from sparse allele-resolved or single-cell Hi-C data at kilobase resolution
    Zhang, Shanshan
    Plummer, Dylan
    Lu, Leina
    Cui, Jian
    Xu, Wanying
    Wang, Miao
    Liu, Xiaoxiao
    Prabhakar, Nachiketh
    Shrinet, Jatin
    Srinivasan, Divyaa
    Fraser, Peter
    Li, Yan
    Li, Jing
    Jin, Fulai
    [J]. NATURE GENETICS, 2022, 54 (07) : 1013 - +
  • [37] Fine mapping chromatin contacts in capture Hi-C data
    Eijsbouts, Christiaan Q.
    Burren, Oliver S.
    Newcombe, Paul J.
    Wallace, Chris
    [J]. BMC GENOMICS, 2019, 20 (1)
  • [38] DeepLoop robustly maps chromatin interactions from sparse allele-resolved or single-cell Hi-C data at kilobase resolution
    Shanshan Zhang
    Dylan Plummer
    Leina Lu
    Jian Cui
    Wanying Xu
    Miao Wang
    Xiaoxiao Liu
    Nachiketh Prabhakar
    Jatin Shrinet
    Divyaa Srinivasan
    Peter Fraser
    Yan Li
    Jing Li
    Fulai Jin
    [J]. Nature Genetics, 2022, 54 : 1013 - 1025
  • [39] Binless normalization of Hi-C data provides significant interaction and difference detection independent of resolution
    Yannick G. Spill
    David Castillo
    Enrique Vidal
    Marc A. Marti-Renom
    [J]. Nature Communications, 10
  • [40] Binless normalization of Hi-C data provides significant interaction and difference detection independent of resolution
    Spill, Yannick G.
    Castillo, David
    Vidal, Enrique
    Marti-Renom, Marc A.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)