An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data

被引:0
|
作者
Mark Carty
Lee Zamparo
Merve Sahin
Alvaro González
Raphael Pelossof
Olivier Elemento
Christina S. Leslie
机构
[1] Computational Biology Program,
[2] Memorial Sloan Kettering Cancer Center,undefined
[3] Institute for Computational Biomedicine,undefined
[4] Weill Cornell Medical College,undefined
[5] Tri-Institutional Training Program in Computational Biology and Medicine,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Here we present HiC-DC, a principled method to estimate the statistical significance (P values) of chromatin interactions from Hi-C experiments. HiC-DC uses hurdle negative binomial regression account for systematic sources of variation in Hi-C read counts—for example, distance-dependent random polymer ligation and GC content and mappability bias—and model zero inflation and overdispersion. Applied to high-resolution Hi-C data in a lymphoblastoid cell line, HiC-DC detects significant interactions at the sub-topologically associating domain level, identifying potential structural and regulatory interactions supported by CTCF binding sites, DNase accessibility, and/or active histone marks. CTCF-associated interactions are most strongly enriched in the middle genomic distance range (∼700 kb–1.5 Mb), while interactions involving actively marked DNase accessible elements are enriched both at short (<500 kb) and longer (>1.5 Mb) genomic distances. There is a striking enrichment of longer-range interactions connecting replication-dependent histone genes on chromosome 6, potentially representing the chromatin architecture at the histone locus body.
引用
收藏
相关论文
共 50 条
  • [1] An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data
    Carty, Mark
    Zamparo, Lee
    Sahin, Merve
    Gonzalez, Alvaro
    Pelossof, Raphael
    Elemento, Olivier
    Leslie, Christina S.
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [2] scHiCDiff: detecting differential chromatin interactions in single-cell Hi-C data
    Liu, Huiling
    Ma, Wenxiu
    [J]. BIOINFORMATICS, 2023, 39 (10)
  • [3] The High-Resolution Coronal Imager (Hi-C)
    Ken Kobayashi
    Jonathan Cirtain
    Amy R. Winebarger
    Kelly Korreck
    Leon Golub
    Robert W. Walsh
    Bart De Pontieu
    Craig DeForest
    Alan Title
    Sergey Kuzin
    Sabrina Savage
    Dyana Beabout
    Brent Beabout
    William Podgorski
    David Caldwell
    Kenneth McCracken
    Mark Ordway
    Henry Bergner
    Richard Gates
    Sean McKillop
    Peter Cheimets
    Simon Platt
    Nick Mitchell
    David Windt
    [J]. Solar Physics, 2014, 289 : 4393 - 4412
  • [4] The High-Resolution Coronal Imager (Hi-C)
    Kobayashi, Ken
    Cirtain, Jonathan
    Winebarger, Amy R.
    Korreck, Kelly
    Golub, Leon
    Walsh, Robert W.
    De Pontieu, Bart
    DeForest, Craig
    Title, Alan
    Kuzin, Sergey
    Savage, Sabrina
    Beabout, Dyana
    Beabout, Brent
    Podgorski, William
    Caldwell, David
    McCracken, Kenneth
    Ordway, Mark
    Bergner, Henry
    Gates, Richard
    McKillop, Sean
    Cheimets, Peter
    Platt, Simon
    Mitchell, Nick
    Windt, David
    [J]. SOLAR PHYSICS, 2014, 289 (11) : 4393 - 4412
  • [5] Deciphering High-Resolution 3D Chromatin Organization via Capture Hi-C
    Hauth, Antonia
    Galupa, Rafael
    Servant, Nicolas
    Villacorta, Laura
    Hauschulz, Kai
    van Bemmel, Joke Gerarda
    Loda, Agnese
    Heard, Edith
    [J]. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2022, (188):
  • [6] miniMDS: 3D structural inference from high-resolution Hi-C data
    Rieber, Lila
    Mahony, Shaun
    [J]. BIOINFORMATICS, 2017, 33 (14) : I261 - I266
  • [7] Identifying statistically significant chromatin contacts from Hi-C data with FitHiC2
    Arya Kaul
    Sourya Bhattacharyya
    Ferhat Ay
    [J]. Nature Protocols, 2020, 15 : 991 - 1012
  • [8] Identifying statistically significant chromatin contacts from Hi-C data with FitHiC2
    Kaul, Arya
    Bhattacharyya, Sourya
    Ay, Ferhat
    [J]. NATURE PROTOCOLS, 2020, 15 (03) : 991 - 1012
  • [9] Genome-wide Hi-C Analyses in Wild-Type and Mutants Reveal High-Resolution Chromatin Interactions in Arabidopsis
    Feng, Suhua
    Cokus, Shawn J.
    Schubert, Veit
    Zhai, Jixian
    Pellegrini, Matteo
    Jacobsen, Steven E.
    [J]. MOLECULAR CELL, 2014, 55 (05) : 694 - 707
  • [10] Rich Chromatin Structure Prediction from Hi-C Data
    Malik, Laraib
    Patro, Rob
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2019, 16 (05) : 1448 - 1458