Boundedness of Calderón–Zygmund operators on ball Campanato-type function spaces

被引:0
|
作者
Yiqun Chen
Hongchao Jia
Dachun Yang
机构
[1] Beijing Normal University,Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences
来源
关键词
Calderón–Zygmund operator; Campanato-type space; Ball quasi-Banach function space; Hardy-type space; Primary 42B20; Secondary 42B25; 42B30; 42B35; 46E35; 47A30;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a ball quasi-Banach function space on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}^n$$\end{document} satisfying some mild assumptions. In this article, the authors first find a reasonable version T~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde{T}$$\end{document} of the Calderón–Zygmund operator T on the ball Campanato-type function space LX,q,s,d(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}_{X,q,s,d}({\mathbb {R}}^n)$$\end{document} with q∈[1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in [1,\infty )$$\end{document}, s∈Z+n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in {\mathbb {Z}}_+^n$$\end{document}, and d∈(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\in (0,\infty )$$\end{document}. Then the authors prove that T~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde{T}$$\end{document} is bounded on LX,q,s,d(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}_{X,q,s,d}({\mathbb {R}}^n)$$\end{document} if and only if, for any γ∈Z+n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \in {\mathbb {Z}}^n_+$$\end{document} with |γ|≤s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\gamma |\le s$$\end{document}, T∗(xγ)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^*(x^{\gamma })=0$$\end{document}, which is hence sharp. Moreover, T~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde{T}$$\end{document} is proved to be the adjoint operator of T, which further strengthens the rationality of the definition of T~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde{T}$$\end{document}. All these results have a wide range of applications. In particular, even when they are applied, respectively, to weighted Lebesgue spaces, variable Lebesgue spaces, Orlicz spaces, Orlicz-slice spaces, Morrey spaces, mixed-norm Lebesgue spaces, local generalized Herz spaces, and mixed-norm Herz spaces, all the obtained results are new. The proofs of these results strongly depend on the properties of the kernel of T under consideration and also on the dual theorem on LX,q,s,d(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}_{X,q,s,d}({\mathbb {R}}^n)$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Boundedness of Calderon-Zygmund operators on ball Campanato-type function spaces
    Chen, Yiqun
    Jia, Hongchao
    Yang, Dachun
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (05)
  • [2] Boundedness of fractional integrals on ball Campanato-type function spaces
    Chen, Yiqun
    Jia, Hongchao
    Yang, Dachun
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2023, 182
  • [3] Estimates for Littlewood–Paley Operators on Ball Campanato-Type Function Spaces
    Hongchao Jia
    Dachun Yang
    Wen Yuan
    Yangyang Zhang
    [J]. Results in Mathematics, 2023, 78
  • [4] Estimates for Littlewood-Paley Operators on Ball Campanato-Type Function Spaces
    Jia, Hongchao
    Yang, Dachun
    Yuan, Wen
    Zhang, Yangyang
    [J]. RESULTS IN MATHEMATICS, 2023, 78 (01)
  • [5] Anisotropic ball Campanato-type function spaces and their applications
    Li, Chaoan
    Yan, Xianjie
    Yang, Dachun
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (03)
  • [6] New Ball Campanato-Type Function Spaces and Their Applications
    Zhang, Yangyang
    Huang, Long
    Yang, Dachun
    Yuan, Wen
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (03)
  • [7] New Ball Campanato-Type Function Spaces and Their Applications
    Yangyang Zhang
    Long Huang
    Dachun Yang
    Wen Yuan
    [J]. The Journal of Geometric Analysis, 2022, 32
  • [8] Anisotropic ball Campanato-type function spaces and their applications
    Chaoan Li
    Xianjie Yan
    Dachun Yang
    [J]. Analysis and Mathematical Physics, 2023, 13
  • [9] The Boundedness of Calderón–Zygmund Operators on Lipschitz Spaces Over Spaces of Homogeneous Type
    Taotao Zheng
    Hongliang Li
    Xiangxing Tao
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2020, 51 : 653 - 669
  • [10] Boundedness of Calderón–Zygmund operators on special John–Nirenberg–Campanato and Hardy-type spaces via congruent cubes
    Hongchao Jia
    Jin Tao
    Dachun Yang
    Wen Yuan
    Yangyang Zhang
    [J]. Analysis and Mathematical Physics, 2022, 12