Boundedness of fractional integrals on ball Campanato-type function spaces

被引:1
|
作者
Chen, Yiqun [1 ]
Jia, Hongchao [1 ]
Yang, Dachun [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ China, Beijing 100875, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Fractional integral; Ball quasi-Banach function space; Campanato-type space; Hardy-type space; MIXED-NORM BESOV; MORREY SPACES; CALDERON-ZYGMUND; HOMOGENEOUS KERNELS; OPERATORS; COMMUTATORS; LP;
D O I
10.1016/j.bulsci.2022.103210
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a ball quasi-Banach function space on R-n satisfying some mild assumptions and let alpha is an element of (0 , n) and beta is an element of (1 , infinity). In this article, when alpha E (0 , 1), the authors first find a reasonable version (I) over tilde (alpha) of the fractional integral I alpha on the ball Campanato-type function space LX,q,s,d(R-n) with q is an element of [1 , oo), s E Zn+ , and d E (0 , oo). Then the authors prove that (I) over tilde (alpha) is bounded from L-X,L-q,L-s,L-d(R-n) to LX,q,s,d(Rn) if and only if there exists a positive constant C such that, for any ball B subset of R-n , |B|(alpha/n) <= C parallel to 1(B)parallel to beta-1/X (beta,) where X-beta denotes the beta-convexification of X. Furthermore, the authors extend the range alpha E (0 , 1) in (I) over tilde (alpha) to the range alpha E (0 , n) and also obtain the corresponding boundedness in this case. Moreover, (I) over tilde (alpha) is proved to be the adjoint operator of I alpha. All these results have a wide range of applications. Particularly, even when they are applied, respectively, to mixed-norm Lebesgue spaces, Morrey spaces, local generalized Herz spaces, and mixed-norm Herz spaces, all the obtained results are new. The proofs of these results strongly depend on the dual theorem on LX,q,s,d(Rn) and also on the special atomic decomposition of molecules of HX (Rn) (the Hardy -type space associated with X) which proves the predual space of LX,q,s,d(Rn). (C) 2022 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:59
相关论文
共 50 条
  • [1] Boundedness of Calderón–Zygmund operators on ball Campanato-type function spaces
    Yiqun Chen
    Hongchao Jia
    Dachun Yang
    [J]. Analysis and Mathematical Physics, 2022, 12
  • [2] Boundedness of Calderon-Zygmund operators on ball Campanato-type function spaces
    Chen, Yiqun
    Jia, Hongchao
    Yang, Dachun
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (05)
  • [3] Anisotropic ball Campanato-type function spaces and their applications
    Li, Chaoan
    Yan, Xianjie
    Yang, Dachun
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (03)
  • [4] Anisotropic ball Campanato-type function spaces and their applications
    Chaoan Li
    Xianjie Yan
    Dachun Yang
    [J]. Analysis and Mathematical Physics, 2023, 13
  • [5] New Ball Campanato-Type Function Spaces and Their Applications
    Zhang, Yangyang
    Huang, Long
    Yang, Dachun
    Yuan, Wen
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (03)
  • [6] New Ball Campanato-Type Function Spaces and Their Applications
    Yangyang Zhang
    Long Huang
    Dachun Yang
    Wen Yuan
    [J]. The Journal of Geometric Analysis, 2022, 32
  • [7] Estimates for Littlewood–Paley Operators on Ball Campanato-Type Function Spaces
    Hongchao Jia
    Dachun Yang
    Wen Yuan
    Yangyang Zhang
    [J]. Results in Mathematics, 2023, 78
  • [8] Estimates for Littlewood-Paley Operators on Ball Campanato-Type Function Spaces
    Jia, Hongchao
    Yang, Dachun
    Yuan, Wen
    Zhang, Yangyang
    [J]. RESULTS IN MATHEMATICS, 2023, 78 (01)
  • [9] Boundedness of Fractional Integrals on Hardy Spaces Associated with Ball Quasi-Banach Function Spaces
    Chen, Yiqun
    Jia, Hongchao
    Yang, Dachun
    [J]. TOKYO JOURNAL OF MATHEMATICS, 2024, 47 (01) : 19 - 59
  • [10] Boundedness of fractional integrals on special John–Nirenberg–Campanato and Hardy-type spaces via congruent cubes
    Hongchao Jia
    Jin Tao
    Dachun Yang
    Wen Yuan
    Yangyang Zhang
    [J]. Fractional Calculus and Applied Analysis, 2022, 25 : 2446 - 2487