Besov Regularity of Solutions to the p-Poisson Equation in the Vicinity of a Vertex of a Polygonal Domain

被引:0
|
作者
Christoph Hartmann
Markus Weimar
机构
[1] Philipps-University Marburg,Faculty of Mathematics and Computer Science, Workgroup Numerics and Optimization
[2] Ruhr-Universität Bochum,Faculty of Mathematics, Workgroup Numerics
来源
Results in Mathematics | 2018年 / 73卷
关键词
-Poisson equation; regularity of solutions; Besov spaces; nonlinear and adaptive approximation; 35B35; 35J92; 41A25; 41A46; 46E35; 65M99;
D O I
暂无
中图分类号
学科分类号
摘要
We study the regularity of solutions to the p-Poisson equation, 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1< p < \infty $$\end{document}, in the vicinity of a vertex of a polygonal domain. In particular, we are interested in smoothness results in the adaptivity scale of Besov spaces Bτστ(Lτ(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^{\sigma _\tau }_{\tau }(L_{\tau }(\Omega ))$$\end{document}, 1/τ=στ/2+1/p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/ \tau = \sigma _\tau /2 + 1/p$$\end{document}, since the regularity in this scale is known to determine the maximal approximation rate that can be achieved by adaptive and other nonlinear approximation methods. We prove that under quite mild assumptions on the right-hand side f, solutions to the p-Poisson equation possess Besov regularity στ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _\tau $$\end{document} for all 0<στ<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< \sigma _\tau < 2$$\end{document}. In case f vanishes in a small neighborhood of the corner, the solutions even admit arbitrary high Besov smoothness. The proofs are based on singular expansion results and continuous embeddings of intersections of Babuska–Kondratiev spaces Kp,aℓ(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {K}}^{\ell }_{p,a}(\Omega )$$\end{document} and Besov spaces Bps(Lp(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^s_p(L_p(\Omega ))$$\end{document} into the specific scale of Besov spaces we are interested in. In regard of these embeddings, we extend the existing results to the limit case ℓ→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \rightarrow \infty $$\end{document} by showing that the Fréchet spaces ∩ℓ=1∞Kp,aℓ(Ω)∩Bps(Lp(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cap _{\ell = 1}^{\infty } {\mathcal {K}}^{\ell }_{p,a}(\Omega ) \cap B^s_p(L_p(\Omega ))$$\end{document} are continuously embedded into the metrizable complete topological vector space ∩στ>0Bτστ(Lτ(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cap _{\sigma _\tau > 0} B^{\sigma _\tau }_{\tau }(L_{\tau }(\Omega ))$$\end{document}.
引用
收藏
相关论文
共 50 条