Besov Regularity of Solutions to the p-Poisson Equation in the Vicinity of a Vertex of a Polygonal Domain

被引:0
|
作者
Christoph Hartmann
Markus Weimar
机构
[1] Philipps-University Marburg,Faculty of Mathematics and Computer Science, Workgroup Numerics and Optimization
[2] Ruhr-Universität Bochum,Faculty of Mathematics, Workgroup Numerics
来源
Results in Mathematics | 2018年 / 73卷
关键词
-Poisson equation; regularity of solutions; Besov spaces; nonlinear and adaptive approximation; 35B35; 35J92; 41A25; 41A46; 46E35; 65M99;
D O I
暂无
中图分类号
学科分类号
摘要
We study the regularity of solutions to the p-Poisson equation, 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1< p < \infty $$\end{document}, in the vicinity of a vertex of a polygonal domain. In particular, we are interested in smoothness results in the adaptivity scale of Besov spaces Bτστ(Lτ(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^{\sigma _\tau }_{\tau }(L_{\tau }(\Omega ))$$\end{document}, 1/τ=στ/2+1/p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/ \tau = \sigma _\tau /2 + 1/p$$\end{document}, since the regularity in this scale is known to determine the maximal approximation rate that can be achieved by adaptive and other nonlinear approximation methods. We prove that under quite mild assumptions on the right-hand side f, solutions to the p-Poisson equation possess Besov regularity στ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _\tau $$\end{document} for all 0<στ<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< \sigma _\tau < 2$$\end{document}. In case f vanishes in a small neighborhood of the corner, the solutions even admit arbitrary high Besov smoothness. The proofs are based on singular expansion results and continuous embeddings of intersections of Babuska–Kondratiev spaces Kp,aℓ(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {K}}^{\ell }_{p,a}(\Omega )$$\end{document} and Besov spaces Bps(Lp(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^s_p(L_p(\Omega ))$$\end{document} into the specific scale of Besov spaces we are interested in. In regard of these embeddings, we extend the existing results to the limit case ℓ→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \rightarrow \infty $$\end{document} by showing that the Fréchet spaces ∩ℓ=1∞Kp,aℓ(Ω)∩Bps(Lp(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cap _{\ell = 1}^{\infty } {\mathcal {K}}^{\ell }_{p,a}(\Omega ) \cap B^s_p(L_p(\Omega ))$$\end{document} are continuously embedded into the metrizable complete topological vector space ∩στ>0Bτστ(Lτ(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cap _{\sigma _\tau > 0} B^{\sigma _\tau }_{\tau }(L_{\tau }(\Omega ))$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Besov Regularity of Solutions to the p-Poisson Equation in the Vicinity of a Vertex of a Polygonal Domain
    Hartmann, Christoph
    Weimar, Markus
    RESULTS IN MATHEMATICS, 2018, 73 (01)
  • [2] Besov regularity of solutions to the p-Poisson equation
    Dahlke, Stephan
    Diening, Lars
    Hartmann, Christoph
    Scharf, Benjamin
    Weimar, Markus
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 130 : 298 - 329
  • [3] Regularity of the p-Poisson equation in the plane
    Lindgren, Erik
    Lindqvist, Peter
    JOURNAL D ANALYSE MATHEMATIQUE, 2017, 132 : 217 - 228
  • [4] Improved regularity for the p-Poisson equation
    Pimentel, Edgard A.
    Rampasso, Giane C.
    Santos, Makson S.
    NONLINEARITY, 2020, 33 (06) : 3050 - 3061
  • [5] Regularity of the p-Poisson equation in the plane
    Erik Lindgren
    Peter Lindqvist
    Journal d'Analyse Mathématique, 2017, 132 : 217 - 228
  • [6] On the solutions to p-Poisson equation with Robin boundary conditions when p goes to plus ∞
    Amato, Vincenzo
    Masiello, Alba Lia
    Nitsch, Carlo
    Trombetti, Cristina
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 1631 - 1649
  • [7] On the lack of interior regularity of the p-Poisson problem with p &gt; 2
    Weimar, Markus
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (06) : 1186 - 1205
  • [8] A note on the optimal boundary regularity for the planar generalized p-Poisson
    Haque, Saikatul
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 175 : 133 - 156
  • [9] C1,α regularity for the normalized p-Poisson problem
    Attouchi, Amal
    Parviainen, Mikko
    Ruosteenoja, Eero
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 108 (04): : 553 - 591
  • [10] Sharp inequalities connected to the homogenized p-Poisson equation
    Lukkassen, D
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 1999, 2 (02): : 243 - 250