Global existence and blow-up to the solutions of a singular porous medium equation with critical initial energy

被引:0
|
作者
Lirong Luo
Jun Zhou
机构
[1] Southwest University,School of Mathematics and Statistics
来源
关键词
singular porous medium equation; critical initial energy; global existence; blow-up; 35B33; 35K50; 35K55; 35K63;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to the study of a singular porous medium equation, which was studied extensively in recent years. We obtain the global existence and blow-up condition at the critical initial energy E(u0)=d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E(u_{0})=d$\end{document}, while the previous papers only considered the case E(u0)<d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E(u_{0})< d$\end{document}, where d is a positive constant which will be given in the main part of this paper.
引用
下载
收藏
相关论文
共 50 条
  • [21] Global existence and blow-up properties of solutions for porous medium equation with nonlinear memory and weighted nonlocal boundary condition
    Zhong Bo Fang
    Jianyun Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 67 - 81
  • [22] Global existence and blow-up properties of solutions for porous medium equation with nonlinear memory and weighted nonlocal boundary condition
    Fang, Zhong Bo
    Zhang, Jianyun
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (01): : 67 - 81
  • [23] Classification of blow-up and global existence of solutions to an initial Neumann problem
    Guo, Bin
    Zhang, Jingjing
    Gao, Wenjie
    Liao, Menglan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 340 : 45 - 82
  • [24] Global existence and blow-up for Riccati equation
    Zhang, WN
    DYNAMIC SYSTEMS AND APPLICATIONS, 2003, 12 (3-4): : 251 - 258
  • [25] Existence and blow-up of solutions of a pseudoparabolic equation
    Yushkov, E. V.
    DIFFERENTIAL EQUATIONS, 2011, 47 (02) : 291 - 295
  • [26] BLOW-UP AND GLOBAL EXISTENCE OF SOLUTIONS FOR A TIME FRACTIONAL DIFFUSION EQUATION
    Li, Yaning
    Zhang, Quanguo
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (06) : 1619 - 1640
  • [27] Global existence and blow-up of solutions for a nonlinear wave equation with memory
    Liang, Fei
    Gao, Hongjun
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [28] Global existence and blow-up of solutions for a nonlinear wave equation with memory
    Fei Liang
    Hongjun Gao
    Journal of Inequalities and Applications, 2012
  • [29] Global existence and blow-up solutions for a nonlinear shallow water equation
    Liu, Yue
    MATHEMATISCHE ANNALEN, 2006, 335 (03) : 717 - 735
  • [30] Blow-up and global existence of solutions for a time fractional diffusion equation
    Yaning Li
    Quanguo Zhang
    Fractional Calculus and Applied Analysis, 2018, 21 : 1619 - 1640