On the Forcing Domination and the Forcing Total Domination Numbers of a Graph

被引:0
|
作者
J. John
V. Sujin Flower
机构
[1] Government College of Engineering,Department of Mathematics
[2] Holy Cross College (Autonomous),Department of Mathematics
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Domination number; Total domination number; Forcing domination number; Forcing total domination number; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a connected graph with at least two vertices and S a γt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{t}$$\end{document}-set of G. A subset T⊆S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T \subseteq S$$\end{document} is called a forcing subset for S if S is the unique γt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{t}$$\end{document}-set containing T. The forcing total domination number of S, denoted by fγt(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{\gamma _{t}}(S)$$\end{document}, is the cardinality of a minimum forcing subset of S. The forcing total domination number of G, denoted by fγt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{\gamma _{t}}(G)$$\end{document} is defined by fγt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{\gamma _{t}}(G)$$\end{document} = min {fγt(S)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lbrace f_{\gamma _{t}}(S)\rbrace$$\end{document}, where the minimum is taken over all minimum total dominating sets S in G. Some general properties satisfied by this concepts are studied. The forcing total dominating number of certain standard graphs are determined. It is shown that for every pair a, b of integers with 0≤a<b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le a < b$$\end{document} and b≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b \ge 1$$\end{document}, there exists a connected graph G such that fγt(G)=a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{\gamma _{t}}(G) = a$$\end{document} and γt(G)=b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{t}(G) = b$$\end{document}, where γt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{t}(G)$$\end{document} is total domination number of G. It is also shown that for every pair a,b of integers with a≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \ge 0$$\end{document} and b≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b \ge 0$$\end{document}, there exists a connected graph G such that fγt(G)=a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{{\gamma }_{t}}(G) = a$$\end{document} and fγ(G)=b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{\gamma }(G) = b$$\end{document}, where fγ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{\gamma }(G)$$\end{document} is the forcing domination number of G.
引用
收藏
相关论文
共 50 条
  • [1] On the Forcing Domination and the Forcing Total Domination Numbers of a Graph
    John, J.
    Flower, V. Sujin
    [J]. GRAPHS AND COMBINATORICS, 2022, 38 (05)
  • [2] FORCING SIGNED DOMINATION NUMBERS IN GRAPHS
    Sheikholeslami, S. M.
    [J]. MATEMATICKI VESNIK, 2007, 59 (04): : 171 - 179
  • [3] The forcing domination numbers of some graphs
    Khodkar, Abdollah
    Sheikholeslami, S. M.
    [J]. ARS COMBINATORIA, 2007, 82 : 365 - 379
  • [4] Forcing Independent Domination Number of a Graph
    Armada, Cris L.
    Canoy, Sergio, Jr.
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 12 (04): : 1371 - 1381
  • [5] THE FORCING NONSPLIT DOMINATION NUMBER OF A GRAPH
    John, J.
    Raj, Malchijah
    [J]. KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (01): : 1 - 12
  • [6] FORCING SUPER DOMINATION NUMBER OF A GRAPH
    Liguarda, Remilou F.
    Canoy, Sergio R., Jr.
    [J]. ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2018, 19 (04): : 339 - 357
  • [7] THE FORCING HOP DOMINATION NUMBER OF A GRAPH
    Anusha, D.
    Robin, S. Joseph
    [J]. ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2020, 25 (01): : 55 - 70
  • [8] Zero forcing and power domination for graph products
    Benson, Katherine F.
    Ferrero, Daniela
    Flagg, Mary
    Furst, Veronika
    Hogben, Leslie
    Vasilevska, Violeta
    Wissman, Brian
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2018, 70 : 221 - 235
  • [9] The forcing geodetic global domination number of a graph
    Selvi, V.
    Sujin Flower, V.
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (02)
  • [10] Perfectly relating the domination, total domination, and paired domination numbers of a graph
    Alvarado, Jose D.
    Dantas, Simone
    Rautenbach, Dieter
    [J]. DISCRETE MATHEMATICS, 2015, 338 (08) : 1424 - 1431