Weighted Lorentz estimates for non-uniformly elliptic problems with variable exponents

被引:0
|
作者
Minh-Phuong Tran
Thanh-Nhan Nguyen
Le-Tuyet-Nhi Pham
Thi-Thanh-Truc Dang
机构
[1] Ton Duc Thang University,Applied Analysis Research Group, Faculty of Mathematics and Statistics
[2] Ho Chi Minh City University of Education,Group of Analysis and Applied Mathematics, Department of Mathematics
[3] Ho Chi Minh City University of Education,Department of Mathematics
来源
manuscripta mathematica | 2023年 / 172卷
关键词
Primary: 35B65; 35J62; 35J92;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a global Lωs,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{s,t}_\omega $$\end{document}-bound for the gradient of weak solutions to non-uniformly nonlinear elliptic equations with variable exponents is presented. The main difficulties arise from variable (p(·),q(·))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p(\cdot ),q(\cdot ))$$\end{document}-growth conditions can be handled by standard techniques. Under the appropriated assumptions and minimal regularity on initial data of the problem, weighted regularity estimates in the frame of Lorentz spaces will be established. Furthermore, the use of level-set inequalities on distribution functions is also imposed to obtained the norm bounds in a wide range of generalized Lebesgue spaces such as Lorentz, Lorentz-Morrey or Orlicz spaces, etc.
引用
收藏
页码:1227 / 1244
页数:17
相关论文
共 50 条