Weighted Lorentz estimates for non-uniformly elliptic problems with variable exponents

被引:0
|
作者
Minh-Phuong Tran
Thanh-Nhan Nguyen
Le-Tuyet-Nhi Pham
Thi-Thanh-Truc Dang
机构
[1] Ton Duc Thang University,Applied Analysis Research Group, Faculty of Mathematics and Statistics
[2] Ho Chi Minh City University of Education,Group of Analysis and Applied Mathematics, Department of Mathematics
[3] Ho Chi Minh City University of Education,Department of Mathematics
来源
manuscripta mathematica | 2023年 / 172卷
关键词
Primary: 35B65; 35J62; 35J92;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a global Lωs,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{s,t}_\omega $$\end{document}-bound for the gradient of weak solutions to non-uniformly nonlinear elliptic equations with variable exponents is presented. The main difficulties arise from variable (p(·),q(·))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p(\cdot ),q(\cdot ))$$\end{document}-growth conditions can be handled by standard techniques. Under the appropriated assumptions and minimal regularity on initial data of the problem, weighted regularity estimates in the frame of Lorentz spaces will be established. Furthermore, the use of level-set inequalities on distribution functions is also imposed to obtained the norm bounds in a wide range of generalized Lebesgue spaces such as Lorentz, Lorentz-Morrey or Orlicz spaces, etc.
引用
收藏
页码:1227 / 1244
页数:17
相关论文
共 50 条
  • [1] Weighted Lorentz estimates for non-uniformly elliptic problems with variable exponents
    Tran, Minh-Phuong
    Nguyen, Thanh-Nhan
    Pham, Le-Tuyet-Nhi
    Dang, Thi-Thanh-Truc
    MANUSCRIPTA MATHEMATICA, 2023, 172 (3-4) : 1227 - 1244
  • [2] Gradient estimates for non-uniformly elliptic problems with BMO nonlinearity
    Byun, Sun-Sig
    Lee, Ho -Sik
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 520 (01)
  • [3] Gradient bounds for non-uniformly quasilinear elliptic two-sided obstacle problems with variable exponents
    Tran, Minh-Phuong
    Nguyen, Thanh-Nhan
    Pham, Le-Tuyet-Nhi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (01)
  • [4] Optimal Lipschitz criteria and local estimates for non-uniformly elliptic problems
    Beck, Lisa
    Mingione, Giuseppe
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2019, 30 (02) : 223 - 236
  • [5] ON DEGENERATE NON-UNIFORMLY ELLIPTIC PROBLEMS
    Ammar, Kaouther
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2010, 2 (02): : 189 - 215
  • [6] Manifold Constrained Non-uniformly Elliptic Problems
    Cristiana De Filippis
    Giuseppe Mingione
    The Journal of Geometric Analysis, 2020, 30 : 1661 - 1723
  • [7] Removable sets in non-uniformly elliptic problems
    Chlebicka, Iwona
    De Filippis, Cristiana
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (02) : 619 - 649
  • [8] Manifold Constrained Non-uniformly Elliptic Problems
    De Filippis, Cristiana
    Mingione, Giuseppe
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (02) : 1661 - 1723
  • [9] Global gradient estimates for non-uniformly elliptic equations
    Byun, Sun-Sig
    Oh, Jehan
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (02)
  • [10] Removable sets in non-uniformly elliptic problems
    Iwona Chlebicka
    Cristiana De Filippis
    Annali di Matematica Pura ed Applicata (1923 -), 2020, 199 : 619 - 649