New Upper Bounds for the Number of Embeddings of Minimally Rigid Graphs

被引:0
|
作者
Evangelos Bartzos
Ioannis Z. Emiris
Raimundas Vidunas
机构
[1] “Athena” Research Center,Department of Informatics & Telecommunications
[2] National & Kapodistrian University of Athens,Institute of Applied Mathematics, Faculty of Mathematics and Informatics
[3] Vilnius University,undefined
来源
关键词
Distance geometry; Minimally rigid graph; Rigid embedding; Upper bound; Laman graph; Oriented graph; 52C25; 14N10;
D O I
暂无
中图分类号
学科分类号
摘要
By definition, a rigid graph in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document} (or on a sphere) has a finite number of embeddings up to rigid motions for a given set of edge length constraints. These embeddings are related to the real solutions of an algebraic system. Naturally, the complex solutions of such systems extend the notion of rigidity to Cd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^d$$\end{document}. A major open problem has been to obtain tight upper bounds on the number of embeddings in Cd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^d$$\end{document}, for a given number |V| of vertices, which obviously also bound their number in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document}. Moreover, in most known cases, the maximal numbers of embeddings in Cd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^d$$\end{document} and Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document} coincide. For decades, only the trivial bound of O(2d|V|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(2^{d|V|})$$\end{document} was known on the number of embeddings. Recently, matrix permanent bounds have led to a small improvement for d≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 5$$\end{document}. This work improves upon the existing upper bounds for the number of embeddings in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document} and Sd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^d$$\end{document}, by exploiting outdegree-constrained orientations on a graphical construction, where the proof iteratively eliminates vertices or vertex paths. For the most important cases of d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document} and d=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=3$$\end{document}, the new bounds are O(3.7764|V|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(3.7764^{|V|})$$\end{document} and O(6.8399|V|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(6.8399^{|V|})$$\end{document}, respectively. In general, we improve the exponent basis in the asymptotic behavior with respect to the number of vertices of the recent bound mentioned above by the factor of 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{2}$$\end{document}. Besides being the first substantial improvement upon a long-standing upper bound, our method is essentially the first general approach relying on combinatorial arguments rather than algebraic root counts.
引用
收藏
页码:796 / 816
页数:20
相关论文
共 50 条
  • [31] New Bounds on the Grundy Number of Products of Graphs
    Campos, Victor
    Gyarfas, Andras
    Havet, Frederic
    Sales, Claudia Linhares
    Maffray, Frederic
    JOURNAL OF GRAPH THEORY, 2012, 71 (01) : 78 - 88
  • [32] New upper bounds for the integrity of cubic graphs
    Atici, M
    Crawford, R
    Ernst, C
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2004, 81 (11) : 1341 - 1348
  • [33] New upper bounds on the decomposability of planar graphs
    Fomin, FV
    Thilikos, DM
    JOURNAL OF GRAPH THEORY, 2006, 51 (01) : 53 - 81
  • [34] MINIMALLY KNOTTED EMBEDDINGS OF PLANAR GRAPHS
    WU, YQ
    MATHEMATISCHE ZEITSCHRIFT, 1993, 214 (04) : 653 - 658
  • [35] Minimally globally rigid graphs
    Garamvolgyi, Daniel
    Jordan, Tibor
    EUROPEAN JOURNAL OF COMBINATORICS, 2023, 108
  • [36] Minimally rigid periodic graphs
    Borcea, Ciprian S.
    Streinu, Ileana
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 : 1093 - 1103
  • [37] New upper bounds for the chromatic number of a graph
    Stacho, L
    JOURNAL OF GRAPH THEORY, 2001, 36 (02) : 117 - 120
  • [38] Three new upper bounds on the chromatic number
    Soto, Maria
    Rossi, Andre
    Sevaux, Marc
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (18) : 2281 - 2289
  • [39] NEW UPPER BOUNDS FOR THE NUMBER OF DIVISORS FUNCTION
    De Koninck, Jean-Marie
    Letendre, Patrick
    COLLOQUIUM MATHEMATICUM, 2020, 162 (01) : 23 - 52
  • [40] Upper bounds for the 2-hued chromatic number of graphs in terms of the independence number
    Dehghan, A.
    Ahadi, A.
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (15) : 2142 - 2146