A voting ensemble machine learning based credit card fraud detection using highly imbalance data

被引:0
|
作者
Raunak Chhabra
Shailza Goswami
Ranjeet Kumar Ranjan
机构
[1] DIT University,School of Computing
[2] Computer Science and Engineering Department,undefined
[3] Thapar Institute of Engineering and Technology,undefined
来源
关键词
Credit card fraud detection; Machine learning; Ensemble learning; Voting ensemble; Class imbalance;
D O I
暂无
中图分类号
学科分类号
摘要
Long gone is the time when people preferred using only cash. In recent years, cashless transactions have gained much popularity, be it using UPI apps or credit and debit cards. The same has even led to a significant increase in the number of credit card fraud cases. Detecting fraudulent transactions is a challenging task as the fraudsters disguise the ordinary conduct of clients in order to perform fraud. Automated intelligent credit card fraud detection can be employed for detecting fraudulent transactions. In this paper, we proposed a credit card fraud detection approach involving an arrangement of supervised machine learning algorithms called ensemble learning. One of the difficulties looked at during the time spent to distinguish fraud transactions in datasets is the imbalanced class distribution. In this work, we employed an ensemble learning model in combination with two data-level techniques for handling class imbalance problems. The proposed approach is the ensemble of three base classifiers including random forest, logistic regress and K-nearest neighbour along with two data-level algorithms namely random oversampling and random undersampling. To combine the predictions of the base classifiers, the weighted voting ensemble approach is used. The proposed approach is evaluated using a highly imbalanced credit card transaction dataset. The proposed approach is evaluated using various sets of weights in order to identify the best possible outcomes in terms of accuracy and minimise the misclassification of fraudulent transactions.
引用
收藏
页码:54729 / 54753
页数:24
相关论文
共 50 条
  • [31] Credit Card Fraud Detection Using AdaBoost and Majority Voting
    Randhawa, Kuldeep
    Loo, Chu Kiong
    Seera, Manjeevan
    Lim, Chee Peng
    Nandi, Asoke K.
    IEEE ACCESS, 2018, 6 : 14277 - 14284
  • [32] Detecting Credit Card Fraud using Machine Learning
    Almuteer A.H.
    Aloufi A.A.
    Alrashidi W.O.
    Alshobaili J.F.
    Ibrahim D.M.
    International Journal of Interactive Mobile Technologies, 2021, 15 (24) : 108 - 122
  • [33] Detection of Credit Card Fraud using a Hybrid Ensemble Model
    Saraf, Sayali
    Phakatkar, Anupama
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (09) : 464 - 474
  • [34] Ensemble Method for Credit Card Fraud Detection
    Wang, Rui
    Liu, Guanjun
    2021 4TH INTERNATIONAL CONFERENCE ON INTELLIGENT AUTONOMOUS SYSTEMS (ICOIAS 2021), 2021, : 246 - 252
  • [35] Credit Card Fraud Detection Using Various Machine Learning and Deep Learning Approaches
    Gorte, Ashvini S.
    Mohod, S. W.
    Keole, R. R.
    Mahore, T. R.
    Pande, Sagar
    INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 3, 2023, 492 : 621 - 628
  • [36] A machine learning based credit card fraud detection using the GA algorithm for feature selection
    Emmanuel Ileberi
    Yanxia Sun
    Zenghui Wang
    Journal of Big Data, 9
  • [37] Developing a Credit Card Fraud Detection Model using Machine Learning Approaches
    Khan, Shahnawaz
    Mishra, Bharavi
    Alourani, Abdullah
    Ali, Ashraf
    Kamal, Mustafa
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (03) : 411 - 418
  • [38] A machine learning based credit card fraud detection using the GA algorithm for feature selection
    Ileberi, Emmanuel
    Sun, Yanxia
    Wang, Zenghui
    JOURNAL OF BIG DATA, 2022, 9 (01)
  • [39] Credit Card Fraud Detection Using a New Hybrid Machine Learning Architecture
    Malik, Esraa Faisal
    Khaw, Khai Wah
    Belaton, Bahari
    Wong, Wai Peng
    Chew, XinYing
    MATHEMATICS, 2022, 10 (09)
  • [40] Credit card fraud detection using Machine Learning Techniques: A Comparative Analysis
    Awoyemi, John O.
    Adetunmbi, Adebayo O.
    Oluwadare, Samuel A.
    PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON COMPUTING NETWORKING AND INFORMATICS (ICCNI 2017), 2017,